植物学报 ›› 2011, Vol. 46 ›› Issue (4): 413-424.doi: 10.3724/SP.J.1259.2011.00413

• 研究报告 • 上一篇    下一篇

干旱胁迫对胡杨PSII光化学效率和激能耗散的影响

朱成刚1,2, 陈亚宁1*, 李卫红1, 付爱红1, 杨玉海1   

  1. 1中国科学院新疆生态与地理研究所, 荒漠与绿洲生态国家重点实验室, 乌鲁木齐 830011
    2中国科学院研究生院, 北京 100049
  • 收稿日期:2010-11-18 修回日期:2011-03-03 出版日期:2011-07-01 发布日期:2011-07-01
  • 通讯作者: 陈亚宁 E-mail:chenyn@ms.xjb.ac.cn
  • 基金资助:

    国家自然科学基金

Effect of Drought Stress on Photochemical Efficiency and Dissipation of Excited Energy in Photosystem II of Populus euphratica

Chenggang Zhu1,2, Yaning Chen1*, Weihong Li1, Aihong Fu1, Yuhai Yang1   

  1. 1State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy ofSciences, Urumqi 830011, China;

    2 Graduate University, Chinese Academy of Sciences, Beijing 100049, China
  • Received:2010-11-18 Revised:2011-03-03 Online:2011-07-01 Published:2011-07-01
  • Contact: Yaning Chen E-mail:chenyn@ms.xjb.ac.cn

摘要: 选取塔里木河下游4处地下水位埋深>4 m的监测井位, 结合地下水位数据, 调查并分析了在地下水位下降引发的干旱胁迫下, 胡杨(Populus euphratica)的叶片水分特征及叶绿素荧光特性, 从能量代谢与转换角度分析了干旱胁迫对胡杨的PSII光化学效率和激能耗散的影响。结果表明: 随着地下水位下降引发的干旱胁迫程度的加剧, 胡杨的叶水势显著降低, 而叶片相对水分含量差异不显著, 总体处于适宜状态(80.38%–86.19%); 在干旱胁迫的影响下, 胡杨的综合光合活性明显降低, 叶片光饱和点显著下降; 同时胡杨的光合作用电子传递速率、PSII光下实际光化学效率以及光化学猝灭均随着光强的增大而显著降低, 且干旱胁迫越剧烈, 下降幅度越大; 干旱胁迫下, 胡杨的非光化学猝灭和调节性能量耗散量子产量等参数则随着光强的增大显著升高, 但是其潜在最大光化学效率却处于适宜状态(0.80–0.86)。说明干旱胁迫下, 胡杨的光合作用光能利用份额下降, 耐受高光强的能力减弱, 捕获的光能过剩程度加剧。胡杨主要通过热耗散来缓解光能过剩带来的压力。虽然研究区胡杨的PSII尚未发生不可逆的光损伤, 但是其发生光抑制以及由此带来的光系统损伤的潜在危险在增加。

Abstract: We selected 4 survey plots with groundwater depths > 4 m near ecological monitoring wells in the Tarim River to investigate leaf water potential, leaf relative water content, and chlorophyll fluorescence characteristics of Populus euphratica under drought stress induced by decreased groundwater level. We analyzed the impact of drought stress on photosystem II photochemical efficiency and excited energy dissipation in terms of energy metabolism and conversion. The leaf water potential of P. euphratica significantly decreased with increasing drought stress induced by increasing groundwater depth, with no significant differences in leaf relative water content, which maintained optimal values (80.38%–86.19%). Under drought stress, synthetically photosynthetic activity and the leaf light saturation point of P. euphratica significantly decreased, and photosynthetic electron transportation rate, actual photochemical efficiency of photosystem II in the light and photochemical quenching of P. euphratica decreased with increasing photosynthetic active radiation. Greater decreases occurred with more severe drought stress. The non-photochemical quenching and the yield for dissipation by downregulation of P. euphratica under drought stress significantly increased with increasing photosynthetic active radiation, and the maximal photochemical efficiency was maintained at an optimal value (0.80–0.86). Increasing drought stress would result in significantly decreased share of photosynthetic solar energy utilization, whereas the ability to withstand high light intensity decreased, which would result in greater excess of excited energy. P. euphratica can release the stress resulting from excess excited energy by heat dissipation, which plays an important role in the process of energy metabolism on the photosystem of P. euphratica. Although the photosystem II of P. euphratica under drought stress in the lower reaches of the Tarim River has not yet been irreversibly damaged because of light inhibition, the potential crisis of light injury induced by light inhibition is increasing.

桂仁意, 刘亚迪, 郭小勤等 (2010). 不同剂量137Cs-γ辐射对毛竹幼苗叶片叶绿素荧光参数的影响45(1): 66 - 72.
胡学华, 蒲光兰, 肖千文等 (2007). 水分胁迫下李树叶绿素荧光动力特性研究. 中国生态农业学报15(1): 75 - 77.
焦德茂, 李霞, 黄雪清等 (2001). 转PEPC基因水稻的光合CO2同化和叶绿素荧光特性. 科学通报46( 5): 414 - 418.
兰伯斯, 庞斯等著, 张国平等译 (2005). 植物生理生态学. 浙江大学出版社.pp: 8-68.
林阿朋, 王超, 乔洪金等 (2009). 青岛海域漂浮和沉降浒苔的光合作用研究. 科学通报54(3): 294 - 298.
张守仁 (1999). 叶绿素荧光动力学参数的意义及讨论.植物学通报16 (4): 444 - 448.
Chen YN, Li WH, Chen YP, et al (2004b). Physiological response of natural plants to the change of groundwater level in the lower reaches of Tarim River, Xinjiang. Progress in natural science 14 (11): 975-983.
Chen YN, Wang Q, Li WH, et al (2006). Rational groundwater table indicated by the eco-physiological parameters of the vegetation: A case study of ecological restoration in the lower reaches of the Tarim River. Chinese Science Bulletin 51: 8-15.
Chen YN, Wang Q, Ruan X, et al (2004a). Physiological response of Populus euphratica to artificial water-recharge of the lower reaches of Tarim River. Acta botani sinica 46 (12): 1393-1401.
Chen YN,Zhang XL,Zhu XM,Li WH (2004c),Zhang YM, et al. Analysis on the ecological benefits of the stream water conveyance to the dried-up river of the lower reaches of Tarim River,China. Science in China 47 (11): 1053-1064.
Chen YP, Chen YN, Li WH, et al (2006). Characterization of photosynthesis of Populus erphratica grown in the arid region. Photosynthetica 44 (4): 622-626.
Dusan Lazar (1999). Chlorophyll a fluorescence induction. Biochimica et Biophysica Acta 1412(3):1-28.
Efeoglu B, Ekmekci Y, Cicek N (2009). Physiological responses of three maize cultivars to drought stress and recovery. South African Journal of Botany 75: 34-42.
Flexas J, Escalona JM, Medrano H (1999). Water stress induces different levels of photosynthesis and electron transport rate regulation in grapevines. Plant Cell Environ. 22:39–48.
Fu AH, Chen YN, Li WH (2006). Analysis on water potential of Populus euphratica oliv and its meaning in the lower reaches of Tarim River, Xinjiang. Chinese Science Bulletin 51 (1): 1-8.
Gries D, Zeng F, Foetzki A, et al (2003). Growth and water relations of Tamarix ramosissima and Populus euphratica on Taklamakan desert dunes in relation to depth to a permanent water table. Plant, cell and environment 26: 725 - 736.
Gu RS, Liu QL, Pei D, et al (2004). Understanding saline and osmotic tolerance of Populus euphratica suspended cells. Plant cell, Tissue and Organ Culture 78: 261-265.
Guerfel Mokhtar, Baccouri Olfa, Boujnah Dalenda, et al (2009). Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars. Scientia Horticulturae119 (3):257-263.
Hamerlynck EP, Huxman TE (2009). Ecophysiology of two Sonoran Desert evergreen shrubs during extreme drought. Journal of Arid Environments 73: 582-585.
Huang X, Chen YN, Li WH, et al (2007). Daily variation of carbon flux in soils of Populus euphratica forests in the middle and lower reaches of the Tarim River. Progress in natural science 17 (5): 584-590.
Kramer DM, Johnson G, Kiirats O, Edwards GE (2004). New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthesis Research 79: 209-218.
Liu JZ, Chen YN, Chen YJ, et al (2005). Degradation of Populus euphratica community in the lower reaches of the Tarim River, Xinjiang, China. Journal of environmental sciences 17 (5): 740-747.
Oxborough K, Baker NR (1997). Resolving chlorophyll fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components—calculation of qp and′Fv /Fm′without measuring Fo′. Photosynthesis Research 54: 135-142.
Peltzer D, Dreyer E, Polle A (2002). Temperature dependencies of anti-oxidative enzymes in two contrasting species. Plant Physiol Biochem. 40:141-50.
Remorini D, Melgar JC, Guidi L et al (2009). Interaction effects of root-zone salinity and solar irradiance on the physiology and biochemistry of Olea europaea. Environmental and Experimental Botany 65(2-3):210-219.
Ribas-Carbo M, Taylor NL, Giles L, et al (2005). Effects of water stress on respiration in soybean leaves. Plant Physiol.139: 466–473.
Siam A. M. J, Radoglou K. M, Noitsakis B (2008). Physiological and growth responses of three Mediterranean oak species to different water availability regimes. Journal of Arid Environments 72(5): 583-592.
Sofo A, Dichio B, Montanaro G et al (2009). Shade effect on photosynthesis and photo-inhibition in olive during drought and rewatering. Agricultural Water Management 96(8):1201-1206.
Tezara W, Mitchell VJ, Driscoll SD, Lawlor DW (1999). Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 1401: 914-7.
Thomas FM, Foetzki A, Arndt SK, et al (2006). Water use by perennial plants in the transition zone between river oasis and desert in NW China. Basic and applied ecology 7: 253-267.
Wang Q, Ruan X., Chen YN, et al (2007). Eco-physiological response of Populus euphratica Oliv. to water release of the lower reaches of the Tarim River, China. Environ Geol 53: 349-357.
Zhuang L, Chen YN (2006). Physiological Responses of Three Contrasting Plant Species to Groundwater Level Changes in an Arid Environment. Journal of Integrative Plant Biology 48 (5): 520-526.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘永书 王永高 单永年. 新油料作物——拉马克月见草[J]. 植物学报, 1984, 2(01): 23 -24 .
[2] 马克平. 小叶章草地枯落物的季节动态[J]. 植物学报, 1993, 10(02): 47 -48 .
[3] 马三梅 王永飞 叶秀麟 赵南先 梁承邺. 单子叶植物无融合生殖的研究进展[J]. 植物学报, 2002, 19(05): 530 -537 .
[4] 何关福 马忠武. 凹叶厚朴树干有效成分研究(简报)[J]. 植物学报, 1991, 8(01): 48 .
[5] 钟泽璞 王发珠. 多变鱼腥藻在不同氮源培养条件下光能转换效率的研究[J]. 植物学报, 1989, 6(02): 90 -94 .
[6] 李正理. 植物制片的染色与染料应用简史[J]. 植物学报, 1991, 8(01): 53 -57 .
[7] 吕慧颖 李银心 孔凡江 杨庆凯. 植物Na+/H+逆向转运蛋白研究进展[J]. 植物学报, 2003, 20(03): 363 -369 .
[8] 何关福. 《中药资源学》一本重要的参考书[J]. 植物学报, 1994, 11(04): 56 -57 .
[9] 周秋菊 张永军 米湘成 魏伟. 外源抗虫蛋白与内源抗虫因子的交互作用[J]. 植物学报, 2004, 21(06): 733 -742 .
[10] 周燮. 成花性赤霉素和细胞分裂素[J]. 植物学报, 1995, 12(专辑3): 15 -17 .