植物学报 ›› 2019, Vol. 54 ›› Issue (5): 547-549.doi: 10.11983/CBB19166

• 热点评 •    下一篇

ZmFBL41 Chang7-2: 玉米抗纹枯病的关键利器

李伟滔,贺闽,陈学伟()   

  1. 四川农业大学西南作物基因资源发掘与利用国家重点实验室(筹), 水稻研究所, 成都 611130
  • 收稿日期:2019-08-27 接受日期:2019-09-17 出版日期:2019-09-01 发布日期:2019-01-01
  • 通讯作者: 陈学伟 E-mail:xwchen88@163.com

Discovery of ZmFBL41 Chang7-2 as A Key Weapon against Banded Leaf and Sheath Blight Resistance in Maize

Li Weitao,He Min,Chen Xuewei()   

  1. Rice Research Institute, State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
  • Received:2019-08-27 Accepted:2019-09-17 Online:2019-09-01 Published:2019-01-01
  • Contact: Chen Xuewei E-mail:xwchen88@163.com

摘要:

由真菌Rhizoctonia solani引起的纹枯病严重危害玉米(Zea mays)和水稻(Oryza sativa)等作物的安全生产。R. solani的宿主范围广且抗源少, 加之相关的抗性机制研究有限, 导致纹枯病的危害长期得不到有效控制。近期, 中国科学家通过对318份玉米自交系进行全基因组关联分析, 筛选到1个与纹枯病抗性相关的、编码F-box结构域蛋白的候选基因ZmFBL41 (GRMZM2G109140)。ZmFBL41蛋白是SCF (SKP1-Cullin-F-box) E3泛素连接酶复合体的一员, 能介导复合体对肉桂醇脱氢酶ZmCAD的降解, 从而降低木质素的积累, 使玉米易感纹枯病。玉米抗病自交系Chang7-2中, 蛋白ZmFBL41 Chang7-2因2个关键氨基酸的变异, 不能结合并降解底物ZmCAD, 使木质素含量增加, 从而提高玉米对纹枯病的抗性。该研究率先揭示了SCF复合体可通过降解肉桂醇脱氢酶来调控植物免疫反应的新型分子机制, 为提高玉米及其它作物对纹枯病的抗性提供了重要理论依据和基因资源。

关键词: 植物免疫, SKP1-Cullin-F-box, 木质素, 纹枯病, 玉米, 水稻

Abstract:

The fungal pathogen Rhizoctonia solani causes banded leaf and sheath blight (BLSB) in maize (Zea mays) and sheath blight (ShB) in rice (Oryza sativa). R. solani has a wide range of host and severely threatens crop production. The lack of resistant resources against BLSB and the poor understanding of disease resistance mechanism hamper the development of effective approaches to control this fungal disease. Recently, Chinese scientists have made a breakthrough discovery that an F-box protein ZmFBL41 mediates the proteasomal degradation of cinnamyl-alcohol dehydrogenase ZmCAD to regulate BLSB and ShB disease resistance. By genome-wide association analysis, GRMZM2G 109140 (ZmFBL41) was identified as a major QTL candidate gene associated with BLSB disease resistance. ZmFBL41 protein is a member of SKP1-Cullin-F-box (SCF) E3 ubiquitin ligase complex which mediates the degradation of ZmCAD, thus reducing the accumulation of lignin and rendering maize more susceptible to R. solani. Interestingly, in the maize inbred line Chang7-2, the natural variation on two amino acids in ZmFBL41 Chang7-2 results in resistance against BLSB. Mechanistically, ZmFBL41 Chang7-2 fails to interact with and degrade its substrate ZmCAD, leading to the accumulation of lignin, which consequently enhances maize resistance. This study not only discovers a novel molecular mechanism underlying disease resistance of maize against R. solani, but also provides important theoretical basis and genetic resources for breeding maize and other crops with improved disease resistance.

Key words: plant immunity, SKP1-Cullin-F-box, lignin, banded leaf and sheath blight, maize, rice

图1

ZmFBL41介导的纹枯病抗性 ZmFBL41与ZmSKP1-1互作形成SCF复合体, 通过26S蛋白酶体降解底物ZmCAD, 减少木质素的积累, 从而使玉米易感纹枯病。而ZmFBL41Chang7-2因其中2个关键氨基酸位点变异(E214G, S217R), 不能结合并降解底物ZmCAD, 从而引起木质素积累, 使玉米对纹枯病的抗性增强。"

1 Baruah P, Lal S (1981). Hostrange of Rhizoctonia solani f. sp. sasakii, then incitant of banded sclerotial disease of maize. Indian Phytopath 34, 494-496.
2 Hooda KS, Khokhar MK, Parmar H, Gogoi R, Joshi D, Sharma SS, Yadav OP (2017). Banded leaf and sheath blight of maize: historical perspectives, current status and future directions. Proc Natl Acad Sci India Sect B Biol Sci 87, 1041-1052.
3 Li N, Lin B, Wang H, Li X, Yang F, Ding X, Yan J, Chu Z (2019). Natural variation in ZmFBL41 confers banded leaf and sheath blight resistance in maize. Nat Genet 51, 1540-1548.
4 Li Z, Pinson SRM, Marchetti MA, Stansel JW, Park WD (1995). Characterization of quantitative trait loci (QTLs) in cultivated rice contributing to field resistance to sheath blight ( Rhizoctonia solani). Theor Appl Genet 91, 382-388.
5 Maeda S, Dubouzet JG, Kondou Y, Jikumaru Y, Seo S, Oda K, Matsui M, Hirochika H, Mori M (2019) The rice CYP78A gene BSR2 confers resistance to Rhizoctonia solani and affects seed size and growth in Arabidopsis and rice. Sci Rep 9, 587.
6 Ogoshi A (1987). Ecology and pathogenicity of anastomosis and interspecific groups of Rhizoctonia solani Kuhn. Ann Rev Phytopathol 25, 125-143.
7 Peng X, Wang H, Jang JC, Xiao T, He H, Jiang D, Tang X (2016). OsWRKY80-OsWRKY4 module as a positive regulatory circuit in rice resistance against Rhizoctonia solani. Rice 9, 63.
8 Richa K, Tiwari IM, Devanna BN, Botella JR, Sharma V, Sharma TR (2017). Novel chitinase gene LOC_Os 11g47510 from indica rice Tetep provides enhanced resistance against sheath blight pathogen Rhizoctonia solani in rice. Front Plant Sci 8, 596.
9 Sharma RC, Srinivas P, Batsa BK (2002). Banded leaf and sheath blight of maize its epidemiology and management. In: Rajbhandari NP, Ransom JK, Adhikari K, Palmer AFE, eds. Proceedings of a Maize Symposium Held. Kathmandu: NARC and CIMMYT. pp. 108-112.
10 Sharma RR, Gour HN, Rathore RS (2004). Etiology of banded leaf and sheath blight symptoms on maize. J Mycol Plant Pathol 34, 56-59.
11 Singh BM, Sharma YR (1976). Evaluation of maize germplasm to banded sclerotial disease and assessment of yield loss. Indian Phytopath 29, 129-132.
12 Wang H, Meng J, Peng X, Tang X, Zhou P, Xiang J, Deng X (2015). Rice WRKY4 acts as a transcriptional activator mediating defense responses toward Rhizoctonia solani, the causing agent of rice sheath blight. Plant Mol Biol 89, 157-171.
[1] 杨程惠子 唐先宇 李威 夏石头. NLR及其在植物抗病中的调控作用[J]. 植物学报, 2020, 55(4): 0-0.
[2] 章怡兰 林雪 吴仪 李梦佳 张晟婕 路梅 饶玉春 王跃星. 水稻根系遗传与育种研究进展-修改稿[J]. 植物学报, 2020, 55(3): 0-0.
[3] 崔亚宁 钱虹萍 赵艳霞 李晓娟. 植物模式识别受体的胞内转运及其在植物免疫中的作用[J]. 植物学报, 2020, 55(3): 0-0.
[4] 韩美玲, 谭茹姣, 晁代印. “绿色革命”新进展: 赤霉素与氮营养双重调控的表观修饰助力水稻高产高效育种[J]. 植物学报, 2020, 55(1): 5-8.
[5] 张彤,郭亚璐,陈悦,马金姣,兰金苹,燕高伟,刘玉晴,徐珊,李莉云,刘国振,窦世娟. 水稻OsPR10A的表达特征及其在干旱胁迫应答过程中的功能[J]. 植物学报, 2019, 54(6): 711-722.
[6] 刘杰, 严建兵. 大刍草稀有等位基因促进玉米密植高产[J]. 植物学报, 2019, 54(5): 554-557.
[7] 张硕, 吴昌银. 长链非编码RNA基因Ef-cd调控水稻早熟与稳产[J]. 植物学报, 2019, 54(5): 550-553.
[8] 田怀东, 李菁, 田保华, 牛鹏飞, 李珍, 岳忠孝, 屈雅娟, 姜建芳, 王广元, 岑慧慧, 李南, 闫枫. 水稻两性生殖细胞的N-甲基-N-亚硝基脲诱变方法[J]. 植物学报, 2019, 54(5): 625-633.
[9] 周纯, 焦然, 胡萍, 林晗, 胡娟, 徐娜, 吴先美, 饶玉春, 王跃星. 水稻早衰突变体LS-es1的基因定位及候选基因分析[J]. 植物学报, 2019, 54(5): 606-619.
[10] 刘栋峰, 唐永严, 雒胜韬, 罗伟, 李志涛, 种康, 徐云远. 利用低温水浴鉴定水稻苗期耐寒性[J]. 植物学报, 2019, 54(4): 509-514.
[11] 刘进, 姚晓云, 余丽琴, 李慧, 周慧颖, 王嘉宇, 黎毛毛. 水稻耐储藏特性三年动态鉴定与QTL分析[J]. 植物学报, 2019, 54(4): 464-473.
[12] 马燕婕, 何浩鹏, 沈文静, 刘标, 薛堃. 转基因玉米对田间节肢动物群落多样性的影响[J]. 生物多样性, 2019, 27(4): 419-432.
[13] 程新杰, 于恒秀, 程祝宽. 水稻减数分裂染色体分析方法[J]. 植物学报, 2019, 54(4): 503-508.
[14] 王孝林,王二涛. 根际微生物促进水稻氮利用的机制[J]. 植物学报, 2019, 54(3): 285-287.
[15] 夏石头,李昕. 开启防御之门: 植物抗病小体[J]. 植物学报, 2019, 54(3): 288-292.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡适宜. 植物的受精作用 第四讲 受精的障碍——不亲和性[J]. 植物学报, 1984, 2(23): 93 -99 .
[2] 蒋高明. 退化生态系统的恢复与管理——兼论自然保护区在其中发挥的作用[J]. 植物学报, 2003, 20(03): 373 -382 .
[3] 张新时. 现代生态学的几个热点[J]. 植物学报, 1990, 7(04): 1 -6 .
[4] 罗立新 崔克明 杨海东 李正理 李举怀. 杜仲形成层恢复活动和过氧化物酶同工酶酶谱的变化[J]. 植物学报, 1994, 11(专辑): 65 .
[5] 张孝英 杨世杰. 胞间连丝与大分子物质的胞间转移[J]. 植物学报, 1999, 16(02): 150 -156 .
[6] 陈璋. 拟南芥:植物分子生物学研究的模式物种[J]. 植物学报, 1994, 11(01): 6 -11 .
[7] 蔡雪. 花粉粒和花粉管中的微管骨架[J]. 植物学报, 1996, 13(专辑): 13 -16 .
[8] 雷晓勇 黄蕾 田梅生 胡小松 戴尧仁. 苹果果肉中抗氰氧化酶(AOX)的分离鉴定[J]. 植物学报, 2002, 19(06): 739 -742 .
[9] 姚春鹏 李娜. 植物激素脱落酸受体的研究进展[J]. 植物学报, 2006, 23(6): 718 -724 .
[10] 王丽, 王芹芹, 王幼群. 蚕豆叶片小叶脉不同发育时期ATP酶和酸性磷酸酶的细胞化学超微结构定位[J]. 植物学报, 2014, 49(1): 78 -86 .