植物学报 ›› 2017, Vol. 52 ›› Issue (6): 681-684.doi: 10.11983/CBB17177

• 热点评 •    下一篇

一氧化氮介导蛋白质亚硝基化与甲基化协调植物非生物胁迫的分子机制

王宇, 何奕騉*()   

  1. 首都师范大学生命科学学院, 北京 100048
  • 收稿日期:2017-09-20 接受日期:2017-11-02 出版日期:2017-11-01 发布日期:2018-12-10
  • 通讯作者: 何奕騉 E-mail:yhe@cnu.edu.cn

The Molecular Mechanism of Nitric Oxide-mediated S-nitrosylation Coordinating with Protein Methylation During Abiotic Stress Responses

Wang Yu, He Yikun*()   

  1. College of Life Sciences, Capital Normal University, Beijing 100048, China
  • Received:2017-09-20 Accepted:2017-11-02 Online:2017-11-01 Published:2018-12-10
  • Contact: He Yikun E-mail:yhe@cnu.edu.cn

摘要:

一氧化氮(NO)作为一种具有活性的小分子物质参与众多动植物生理活动。在蛋白转录后修饰方面, NO主要以S-亚硝基化(S-nitrosylation)的形式参与。而甲基化作为另一种蛋白翻译后修饰, 在DNA损伤及mRNA翻译方面具有重要作用。虽然近年来有关这2种蛋白翻译后修饰方面的研究成果较多, 但是2种途径之间是否存在相互作用却报道较少。近期, 我国科学家发现NO可以通过S-亚硝基化修饰PRMT5的第125位半胱氨酸, 正向调节该精氨酸甲基转移酶活性。prmt5-1突变体表现出严重的发育障碍且对非生物胁迫敏感。通过互补第125位半胱氨酸点突变PRMT5基因, 使之转化为不可被S-亚硝基化修饰的氨基酸后, 拟南芥(Arabidopsis thaliana)植株可恢复突变体的发育障碍, 但无法恢复其非生物胁迫敏感表型。实验同时证明, PRMT5蛋白第125位半胱氨酸的S-亚硝基化修饰参与调节NaCl诱导的精氨酸对二甲基化。该研究引领了蛋白S-亚硝基化和蛋白甲基化修饰新方向, 开辟了新的研究领域, 同时为相关研究树立了新的榜样。

关键词: 拟南芥, 蛋白转录后修饰, 一氧化氮, S-亚硝基化, 蛋白甲基化

Abstract:

Nitric oxide, as a small active particle, is involved in many physiological activities of animals and plants. In protein posttranslational modifications, NO is mainly in the form of (NO)-based S-nitrosylation. Methylation, as another protein transcription modification, also has an important role in DNA damage and mRNA translation. Although these two areas have many published articles in recent years, there are few reports of the interaction between the two approaches. Recently, Chinese scientists have found that NO can positively regulate the activity of PRMT5, an enzyme that catalyzes Arg symmetric demethylation, through S-nitrosylation at Cys-125. The Arabidopsis prmt5-1 mutant shows severe deve- lopmental defects and hypersensitivity in stress responses. A PRMT5C125S transgene with non-nitrosylatable mutation at Cys-125 in a prmt5-1 background shows recovered developmental defects but not the stress responses. Furthermore, S-nitrosylation at Cys-125 of PRMT5 was found involved in regulating Arg symmetric demethylation induced by NaCl. The study led to a new direction of protein S-nitrosylation and protein methylation modification, which opened up new research fields and set a new example for research in this field.

Key words: Arabidopsis, protein posttranscriptional modification, nitric oxide, S-nitrosylation, protein methylation

图1

S-亚硝基化反应"

图2

蛋白质亚硝基化与甲基化通路互作调控植物胁迫反应的工作模型(Hu et al., 2017)"

[1] Astier J, Rasul S, Koen E, Manzoor H, Besson-Bard A, Lamotte O, Jeandroz S, Durner J, Lindermayr C, Wendehenne D (2011). S-nitrosylation: an emerging post- translational protein modification in plants.Plant Sci 181, 527-533.
doi: 10.1016/j.plantsci.2011.02.011 pmid: 21893248
[2] Bedford MT, Clarke SG (2009). Protein arginine methylation in mammals: who, what, and why.Mol Cell 33, 1-13.
doi: 10.1016/j.molcel.2008.12.013 pmid: 19150423
[3] Chen RQ, Sun SL, Wang C, Li YS, Liang Y, An FY, Li C, Dong HL, Yang XH, Zhang J, Zuo JR (2009). The Arabidopsis PARAQUAT RESISTANT2 gene encodes an S-nitrosoglutathione reductase that is a key regulator of cell death. Cell Res 19, 1377-1387.
[4] Feechan A, Kwon E, Yun BW, Wang YQ, Pallas JA, Loake GJ (2005). A central role for S-nitrosothiols in plant disease resistance. Proc Natl Acad Sci USA 102, 8054-8059.
[5] Frungillo L, Spoel SH (2017). Modulating the modulator: regulation of protein methylation by nitric oxide.Mol Cell 67, 535-537.
doi: 10.1016/j.molcel.2017.08.001 pmid: 28820964
[6] Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005). Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6, 150-166.
[7] Hu JL, Yang HJ, Mu JY, Lu TC, Peng JL, Deng X, Kong ZS, Bao SL, Cao XF, Zuo JR (2017). Nitric oxide regulates protein methylation during stress responses in plants.Mol Cell 67, 702-710.
doi: 10.1016/j.molcel.2017.06.031 pmid: 28757206
[8] Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou ZL, Song JQ, Wang C, Zuo JR, Dong XN (2008). Plant immunity requires conformational charges of NPR1 via S-nitrosy- lation and thioredoxins. Science 321, 952-956.
[9] Tavares CP, Vernal J, Delena RA, Lamattina L, Cassia R, Terenzi H (2014). S-nitrosylation influences the structure and DNA binding activity of AtMYB30 transcription factor from Arabidopsis thaliana. Biochim Biophys Acta 1844, 810-817.
doi: 10.1016/j.bbapap.2014.02.015 pmid: 24583075
[10] Wang PC, Du YY, Hou YJ, Zhao Y, Hsu CC, Yuan FJ, Zhu XH, Tao WA, Song CP, Zhu JK (2015). Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. Proc Natl Acad Sci USA 112, 613-618.
[11] Yang HJ, Mu JY, Chen LC, Feng J, Hu JL, Li L, Zhou JM, Zuo JR (2015). S-nitrosylation positively regulates ascor- bate peroxidase activity during plant stress responses. Plant Physiol 167, 1604-1615.
[1] 左建儒. 植物蛋白质S-亚硝基化修饰的检测与分析[J]. 植物学报, 2019, 54(4): 0-0.
[2] 崔胜男, 张艺函, 徐凡. 异源过表达水稻OsSAPP3基因促进拟南芥叶片衰老[J]. 植物学报, 2019, 54(1): 46-57.
[3] 刘凯歌, 齐双慧, 段绍伟, 李东, 金倡宇, 高晨浩, 刘绚霞, 陈明训. 甘蓝型油菜BnTTG1-1基因的功能分析[J]. 植物学报, 2017, 52(6): 713-722.
[4] 张盛春, 李清明, 阳成伟. 拟南芥金属蛋白酶FtSH4通过生长素与活性氧调控叶片衰老[J]. 植物学报, 2017, 52(4): 453-464.
[5] 张玲玲, 吴丹, 赵子捷, 赵立群. 植物一氧化氮信号分子的研究进展[J]. 植物学报, 2017, 52(3): 337-345.
[6] 何明洁, 孙伊辰, 程晓园, 时冬雪, 李迪秦, 陈益银, 冯永坤, 刘璐, 范腾飞, 杨超, 曹凤秋, 刘来华. 植物谷氨酸受体的研究进展[J]. 植物学报, 2016, 51(6): 827-840.
[7] 康菊清, 孙田舒, 张慧婷, 施逸豪. 长江流域野生拟南芥种群QTL作图平台的建立[J]. 植物学报, 2016, 51(5): 659-666.
[8] 康菊清, 张岱鹏. 低温条件下中国野生拟南芥种群中CBF3与ROS浓度的相关性[J]. 植物学报, 2016, 51(5): 577-585.
[9] 马春丽, 和硕特麦丽斯, 祁智, 王静, 张俊霞. 镁转运体MGT7参与拟南芥对高钙环境的适应[J]. 植物学报, 2016, 51(4): 496-503.
[10] 席红梅, 徐文忠, 麻密. 拟南芥双功能酶SAL1生物学功能的研究进展[J]. 植物学报, 2016, 51(3): 377-386.
[11] 刘慧, 郭丹丽, 蔡大润, 黄先忠. 小拟南芥ApZFP基因异源超表达促进拟南芥开花并提高耐逆性[J]. 植物学报, 2016, 51(3): 296-305.
[12] 雷凯健, 任晶, 朱园园, 安国勇. 拟南芥SPL1基因参与调节低磷条件下的根际酸化反应[J]. 植物学报, 2016, 51(2): 184-193.
[13] 彭雄波, 孙蒙祥. 中国科学家在植物受精过程中雌雄配子体信号识别机制研究中取得突破性进展[J]. 植物学报, 2016, 51(2): 145-147.
[14] 李冬梅, 王路雅, 张澜玥,帖子阳, 毛惠平. 拟南芥短肽激素PROPEP基因家族在根生长中的作用机理[J]. 植物学报, 2016, 51(2): 202-209.
[15] 刘振, 刘霞, 刘建中. 亚硝基化在植物细胞死亡及防御反应中的作用[J]. 植物学报, 2016, 51(1): 130-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吴波, 朱春全, 李迪强, 董珂, 王秀磊, 石培礼. 长江上游森林生态区生物多样性保护优先区确定——基于生态区保护方法[J]. 生物多样性, 2006, 14(2): 87 -97 .
[2] 唐永康, 郭双生, 林杉, 艾为党, 秦利锋. 低压环境中植物的生长特性及适应机理研究进展[J]. 植物生态学报, 2011, 35(8): 872 -881 .
[3] Yi Deng, Wei Wang, Wen-Qing Li, Chuan Xia, Hong-Ze Liao, Xue-Qin Zhang and De Ye. MALE GAMETOPHYTE DEFECTIVE 2, Encoding a Sialyltransferase-like Protein, is Required for Normal Pollen Germination and Pollen Tube Growth in Arabidopsis[J]. Journal of Integrative Plant Biology, 2010, 52(9): 829 -843 .
[4] Gao-Qiang LIU and Ke-Chang ZHANG. Mechanisms of the Anticancer Action of Ganoderma lucidum (Leyss. Ex Fr.) Karst.: A New Understanding[J]. Journal of Integrative Plant Biology, 2005, 47(2): .
[5] 刘贵华, 周进, 李伟, 郭友好. 普通野生稻种群恢复的生态学研究 II.种群动态[J]. 植物生态学报, 2002, 26(3): 372 -376 .
[6] 胡小文, 王娟, 王彦荣. 野豌豆属4种植物种子萌发的积温模型分析[J]. 植物生态学报, 2012, 36(8): 841 -848 .
[7] 贺金生, 韩兴国. 生态化学计量学: 探索从个体到生态系统的统一化理论[J]. 植物生态学报, 2010, 34(1): 2 -6 .
[8] 万贤崇, 孟平. 植物体内水分长距离运输的生理生态学机制[J]. 植物生态学报, 2007, 31(5): 804 -813 .
[9] 杨文 何如洲 程剑平 郭荣发 邝雪梅. 甘蔗过氧化物酶同工酶分析[J]. 植物学报, 1998, 15(06): 65 -69 .
[10] Jun LIU, Ming-Yi JIANG, Yi-Feng ZHOU and You-Liang LIU. Production of Polyamines Is Enhanced by Endogenous Abscisic Acid in Maize Seedlings Subjected to Salt Stress[J]. Journal of Integrative Plant Biology, 2005, 47(11): 1326 -1334 .