植物学报 ›› 2017, Vol. 52 ›› Issue (6): 681-684.doi: 10.11983/CBB17177

• 热点评 •    下一篇

一氧化氮介导蛋白质亚硝基化与甲基化协调植物非生物胁迫的分子机制

王宇, 何奕騉*()   

  1. 首都师范大学生命科学学院, 北京 100048
  • 收稿日期:2017-09-20 接受日期:2017-11-02 出版日期:2017-11-01 发布日期:2018-12-10
  • 通讯作者: 何奕騉 E-mail:yhe@cnu.edu.cn

The Molecular Mechanism of Nitric Oxide-mediated S-nitrosylation Coordinating with Protein Methylation During Abiotic Stress Responses

Wang Yu, He Yikun*()   

  1. College of Life Sciences, Capital Normal University, Beijing 100048, China
  • Received:2017-09-20 Accepted:2017-11-02 Online:2017-11-01 Published:2018-12-10
  • Contact: He Yikun E-mail:yhe@cnu.edu.cn

摘要:

一氧化氮(NO)作为一种具有活性的小分子物质参与众多动植物生理活动。在蛋白转录后修饰方面, NO主要以S-亚硝基化(S-nitrosylation)的形式参与。而甲基化作为另一种蛋白翻译后修饰, 在DNA损伤及mRNA翻译方面具有重要作用。虽然近年来有关这2种蛋白翻译后修饰方面的研究成果较多, 但是2种途径之间是否存在相互作用却报道较少。近期, 我国科学家发现NO可以通过S-亚硝基化修饰PRMT5的第125位半胱氨酸, 正向调节该精氨酸甲基转移酶活性。prmt5-1突变体表现出严重的发育障碍且对非生物胁迫敏感。通过互补第125位半胱氨酸点突变PRMT5基因, 使之转化为不可被S-亚硝基化修饰的氨基酸后, 拟南芥(Arabidopsis thaliana)植株可恢复突变体的发育障碍, 但无法恢复其非生物胁迫敏感表型。实验同时证明, PRMT5蛋白第125位半胱氨酸的S-亚硝基化修饰参与调节NaCl诱导的精氨酸对二甲基化。该研究引领了蛋白S-亚硝基化和蛋白甲基化修饰新方向, 开辟了新的研究领域, 同时为相关研究树立了新的榜样。

关键词: 拟南芥, 蛋白转录后修饰, 一氧化氮, S-亚硝基化, 蛋白甲基化

Abstract:

Nitric oxide, as a small active particle, is involved in many physiological activities of animals and plants. In protein posttranslational modifications, NO is mainly in the form of (NO)-based S-nitrosylation. Methylation, as another protein transcription modification, also has an important role in DNA damage and mRNA translation. Although these two areas have many published articles in recent years, there are few reports of the interaction between the two approaches. Recently, Chinese scientists have found that NO can positively regulate the activity of PRMT5, an enzyme that catalyzes Arg symmetric demethylation, through S-nitrosylation at Cys-125. The Arabidopsis prmt5-1 mutant shows severe deve- lopmental defects and hypersensitivity in stress responses. A PRMT5C125S transgene with non-nitrosylatable mutation at Cys-125 in a prmt5-1 background shows recovered developmental defects but not the stress responses. Furthermore, S-nitrosylation at Cys-125 of PRMT5 was found involved in regulating Arg symmetric demethylation induced by NaCl. The study led to a new direction of protein S-nitrosylation and protein methylation modification, which opened up new research fields and set a new example for research in this field.

Key words: Arabidopsis, protein posttranscriptional modification, nitric oxide, S-nitrosylation, protein methylation

图1

S-亚硝基化反应"

图2

蛋白质亚硝基化与甲基化通路互作调控植物胁迫反应的工作模型(Hu et al., 2017)"

[1] Astier J, Rasul S, Koen E, Manzoor H, Besson-Bard A, Lamotte O, Jeandroz S, Durner J, Lindermayr C, Wendehenne D (2011). S-nitrosylation: an emerging post- translational protein modification in plants.Plant Sci 181, 527-533.
doi: 10.1016/j.plantsci.2011.02.011 pmid: 21893248
[2] Bedford MT, Clarke SG (2009). Protein arginine methylation in mammals: who, what, and why.Mol Cell 33, 1-13.
doi: 10.1016/j.molcel.2008.12.013 pmid: 19150423
[3] Chen RQ, Sun SL, Wang C, Li YS, Liang Y, An FY, Li C, Dong HL, Yang XH, Zhang J, Zuo JR (2009). The Arabidopsis PARAQUAT RESISTANT2 gene encodes an S-nitrosoglutathione reductase that is a key regulator of cell death. Cell Res 19, 1377-1387.
[4] Feechan A, Kwon E, Yun BW, Wang YQ, Pallas JA, Loake GJ (2005). A central role for S-nitrosothiols in plant disease resistance. Proc Natl Acad Sci USA 102, 8054-8059.
[5] Frungillo L, Spoel SH (2017). Modulating the modulator: regulation of protein methylation by nitric oxide.Mol Cell 67, 535-537.
doi: 10.1016/j.molcel.2017.08.001 pmid: 28820964
[6] Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005). Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6, 150-166.
[7] Hu JL, Yang HJ, Mu JY, Lu TC, Peng JL, Deng X, Kong ZS, Bao SL, Cao XF, Zuo JR (2017). Nitric oxide regulates protein methylation during stress responses in plants.Mol Cell 67, 702-710.
doi: 10.1016/j.molcel.2017.06.031 pmid: 28757206
[8] Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou ZL, Song JQ, Wang C, Zuo JR, Dong XN (2008). Plant immunity requires conformational charges of NPR1 via S-nitrosy- lation and thioredoxins. Science 321, 952-956.
[9] Tavares CP, Vernal J, Delena RA, Lamattina L, Cassia R, Terenzi H (2014). S-nitrosylation influences the structure and DNA binding activity of AtMYB30 transcription factor from Arabidopsis thaliana. Biochim Biophys Acta 1844, 810-817.
doi: 10.1016/j.bbapap.2014.02.015 pmid: 24583075
[10] Wang PC, Du YY, Hou YJ, Zhao Y, Hsu CC, Yuan FJ, Zhu XH, Tao WA, Song CP, Zhu JK (2015). Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. Proc Natl Acad Sci USA 112, 613-618.
[11] Yang HJ, Mu JY, Chen LC, Feng J, Hu JL, Li L, Zhou JM, Zuo JR (2015). S-nitrosylation positively regulates ascor- bate peroxidase activity during plant stress responses. Plant Physiol 167, 1604-1615.
[1] 张楠 吴娟 张晓旭 杨贺 岑曦 林建辉 刘自广 孙世臣 刘圣怡 彭疑芳. 拟南芥AtR8 lncRNA对盐胁迫响应及其对种子萌发的调节作用[J]. 植物学报, 2020, 55(4): 0-0.
[2] 武亮, 戚益军. 小RNA, 大本领: 22 nt siRNAs在植物适应逆境中的重要作用[J]. 植物学报, 2020, 55(3): 270-273.
[3] 左泽远,刘琬琳,许杰. 拟南芥花药绒毡层细胞中具有基因簇特征的基因进化和功能分析[J]. 植物学报, 2020, 55(2): 147-162.
[4] 赵青平,马世凡,李芮茜,王田雨,赵翔. 拟南芥NPH3/RPT2-Like (NRL)家族蛋白在向光素信号转导通路中的作用研究进展[J]. 植物学报, 2020, 55(2): 240-253.
[5] 赵华,邵广达,高文鑫,顾彪. 双管基因枪介导的基因瞬时表达技术在拟南芥中的应用[J]. 植物学报, 2020, 55(2): 182-191.
[6] 姚玉婷,马家琦,冯晓莉,潘建伟,王超. 磷酸肌醇激酶FAB1调控拟南芥根毛伸长[J]. 植物学报, 2020, 55(2): 126-136.
[7] 曲高平, 金京波. 植物蛋白SUMO化修饰检测方法[J]. 植物学报, 2020, 55(1): 83-89.
[8] 贺祯媚,李东明,齐艳华. 植物ABCB亚家族生物学功能研究进展[J]. 植物学报, 2019, 54(6): 688-698.
[9] 徐婉约, 王应祥. 染色体展片法观察拟南芥雄性减数分裂过程中的染色体形态[J]. 植物学报, 2019, 54(5): 620-624.
[10] 陈立超, 詹妮, 李彦莎, 冯健, 左建儒. 植物蛋白质S-亚硝基化修饰的检测与分析[J]. 植物学报, 2019, 54(4): 497-502.
[11] 崔胜男, 张艺函, 徐凡. 异源过表达水稻OsSAPP3基因促进拟南芥叶片衰老[J]. 植物学报, 2019, 54(1): 46-57.
[12] 刘凯歌, 齐双慧, 段绍伟, 李东, 金倡宇, 高晨浩, 刘绚霞, 陈明训. 甘蓝型油菜BnTTG1-1基因的功能分析[J]. 植物学报, 2017, 52(6): 713-722.
[13] 张盛春, 李清明, 阳成伟. 拟南芥金属蛋白酶FtSH4通过生长素与活性氧调控叶片衰老[J]. 植物学报, 2017, 52(4): 453-464.
[14] 张玲玲, 吴丹, 赵子捷, 赵立群. 植物一氧化氮信号分子的研究进展[J]. 植物学报, 2017, 52(3): 337-345.
[15] 何明洁, 孙伊辰, 程晓园, 时冬雪, 李迪秦, 陈益银, 冯永坤, 刘璐, 范腾飞, 杨超, 曹凤秋, 刘来华. 植物谷氨酸受体的研究进展[J]. 植物学报, 2016, 51(6): 827-840.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 童哲编译. 赤霉素的生物化学和分子生物学国际研讨会[J]. 植物学报, 2000, 17(06): 572 .
[2] 赵玉锦 王台 童哲. 一种简单的分离提取水稻叶片中IAA、ABA和GAs的方法[J]. 植物学报, 1994, 11(04): 52 -55 .
[3] 倪健 吴继友. 利用植物叶面反射光谱探测隐伏地下矿产[J]. 植物学报, 1997, 14(01): 36 -40 .
[4] 郭宏波 柯卫东 李双梅 彭静. 野生莲资源的RAPD 分析[J]. 植物学报, 2005, 22(增刊): 64 -67 .
[5] 林鹏, 卢昌义, 王恭礼, 陈焕雄. 海南岛河港海莲红树林凋落物动态的研究[J]. 植物生态学报, 1990, 14(1): 69 -74 .
[6] 马洋, 王雪芹, 张波, 刘进辉, 韩章勇, 唐钢梁. 风蚀和沙埋对塔克拉玛干沙漠南缘骆驼刺水分和光合作用的影响[J]. 植物生态学报, 2014, 38(5): 491 -498 .
[7] 捷明. 国际应用系统分析研究所的生物圈项目[J]. 植物生态学报, 1990, 14(1): 93 -94 .
[8] 陈志成, 万贤崇. 虫害叶损失造成的树木非结构性碳减少与树木生长、死亡的关系研究进展[J]. 植物生态学报, 2016, 40(9): 958 -968 .
[9] 李凡, 张焕君, 吕振波, 徐炳庆, 郑亮. 莱州湾游泳动物群落种类组成及多样性[J]. 生物多样性, 2013, 21(5): 537 -546 .
[10] 周春发, 周大庆, 孔祥坤, 邓文洪. 四种同域分布洞巢鸟的巢址特征比较[J]. 生物多样性, 2012, 20(6): 716 -724 .