植物学报 ›› 2017, Vol. 52 ›› Issue (5): 539-542.doi: 10.11983/CBB17126

• 热点评 •    下一篇

突破复杂性状多基因转化技术壁垒, 首创胚乳花青素 高积累的水稻新种质

朱丽, 钱前*()   

  1. 中国水稻研究所, 水稻生物学国家重点实验室, 杭州 311401
  • 收稿日期:2017-07-03 接受日期:2017-08-30 出版日期:2017-09-01 发布日期:2017-07-10
  • 通讯作者: 钱前 E-mail:qianqian188@hotmail.com

Development of “Purple Endosperm Rice” by Engineering Anthocyanin Biosynthesis in Endosperm: Significant Breakthrough in Transgene Stacking System, New Progress in Rice Biofortification

Li Zhu, Qian Qian*()   

  1. State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311401, China
  • Received:2017-07-03 Accepted:2017-08-30 Online:2017-09-01 Published:2017-07-10
  • Contact: Qian Qian E-mail:qianqian188@hotmail.com

摘要:

随着转基因技术的日趋成熟, 利用生物工程手段加快改良作物农艺性状, 已经越来越显示出其巨大的应用潜力。在改良多基因调控的复杂农艺性状方面, 单基因转化收效甚微, 而长期以来多基因转化不仅受限于技术因素, 而且在协调表达调控、代谢及修饰等一系列相关基因方面更是难于突破。近期, 我国科学家首次利用自创的多基因垛叠表达系统, 成功在水稻(Oryza sativa)胚乳中合成了具有抗氧化活性的花青素, 在复杂性状多基因转化领域取得了突破性进展。

关键词: 花青素, 多基因转化, 胚乳, 无选择标记, 水稻

Abstract:

With improved transgenic technology, there is great potential for bio-fortification of crops. For complex agronomic traits controlled by multiple genes, single gene transformation is insufficient, and multi-gene engineering is limited to technical factors. Regulation and expression of metabolic modification and a series of related genes is more difficult to break through. Recently, Chinese scientists successfully engineered sophisticated anthocyanin biosynthesis in rice endosperm, which suggests the potential utility of the TransGene Stacking II System for synthetic biology and improving agronomic traits in crops.

Key words: anthocyanin, multiple gene transformation, endosperm, marker excision, rice

[1] 陆美芳, 刘巧泉, 于恒秀, 顾铭洪 (2005). 农杆菌介导的水稻双载体共转化法中部分影响因素的研究. 生物技术通报 5, 55-62.
[2] 朱祯, 李旭刚 (2003). 一种利用双T-DNA载体培育无选择标记转基因水稻的方法: 02107429.1. 2003-10-01.
[3] Austin S, Ziese M, Sternberg N (1981). A novel role for site-specific recombination in maintenance of bacterial replicons.Cell 25, 729-736.
[4] Dale E, Ow D (1991). Gene transfer with subsequent removal of the selection gene from the host genome.Proc Natl Acad Sci USA 88, 10558-10562.
[5] Ebinuma H, Sugita K, Matsunaga E, Yamakado M (1997). Selection of marker-free transgenic plants using the isop- entenyl transferase gene.Proc Natl Acad Sci USA 94, 2117-2121.
[6] Farhi M, Marhevka E, Ben-Ari J, Algamas-Dimantov A, Liang Z, Zeevi V, Edelbaum O, Spitzer-Rimon B, Abeliovich H, Schwartz B, Tzfira T, Vainstein A (2011). Generation of the potent anti-malarial drug artemisinin in tobacco.Nat Biotechnol 29, 1072-1074.
[7] Grotewold E (2006). The genetics and biochemistry of floral pigments.Annu Rev Plant Biol 57, 761-780.
[8] Halpin C (2005). Gene stacking in transgenic plants—the challenge for 21st century plant biotechnology.Plant Bio- technol J 3, 141-155.
[9] Hamilton C, Frary A, Lewis C, Tanksley S (1996). Stable transfer of intact high molecular weight DNA into plant chromosomes.Proc Natl Acad Sci USA 93, 9975-9979.
[10] Holton T, Cornish E (1995). Genetics and biochemistry of anthocyanin biosynthesis.Plant Cell 7, 1071-1083.
[11] Karunanandaa B, Qi Q, Hao M, Baszis S, Jensen P, Wong Y, Jiang J, Venkatramesh M, Gruys KJ, Moshiri F, Post-Beittenmiller D, Weiss J, Valentin H (2005). Metabolically engineered oilseed crops with enhanced se- ed tocopherol.Metab Eng 7, 384-400.
[12] Liu Y, Liu H, Chen L, Qiu W, Zhang Q, Wu H, Yang C, Su J, Wang Z, Tian D, Mei M (2002). Development of new transformation competent artificial chromosome vectors and rice genomic libraries for efficient gene cloning.Gene 282, 247-255.
[13] Liu Y, Shirano Y, Fukaki H, Yanai Y, Tasaka M, Tabata S, Shibata D (1999). Complementation of plant mutants with large genomic DNA fragments by a transformation com- petent artificial chromosome vector accelerates posi- tional cloning.Proc Natl Acad Sci USA 96, 6535-6540.
[14] Miki B, McHugh S (2004). Selectable marker genes in transgenic plants: applications, alternatives and biosafety.J Biotechnol 107, 193-232.
[15] Ogata J, Kanno Y, Itoh Y, Tsugawa H, Suzuki M (2005). Plant biochemistry: anthocyanin biosynthesis in roses.Nature 435, 757-758.
[16] Ogo Y, Ozawa K, Ishimaru T, Murayama T, Takaiwa F (2013). Transgenic rice seed synthesizing diverse flavonoids at high levels: a new platform for flavonoid production with associated health benefits.Plant Biotechnol J 11, 734-746.
[17] Shin Y, Park H, Yim S, Baek N, Lee C, An G, Woo Y (2006). Transgenic rice lines expressing maize C1 and R-S regulatory genes produce various flavonoids in the endosperm.Plant Biotechnol J 4, 303-315.
[18] Wang L, Stoner G (2008). Anthocyanins and their role in cancer prevention.Cancer Lett 269, 281-290.
[19] Wu G, Truksa M, Datla N, Vrinten P, Bauer J, Zank T, Cirpus P, Heinz E, Qiu X (2005). Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants.Nat Biotechnol 23, 1013-1017.
[20] Yau YY, Stewart CN (2013). Less is more: strategies to remove marker genes from transgenic plants.BMC Biotechnol 13, 36.
[21] Zambryski P, Joos H, Genetello C, Leemans J, Montagu MV, Schell J (1983). Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity.EMBO J 2, 2143-2150.
[22] Zhang Y, Butelli E, Martin C (2014). Engineering anthocyanin biosynthesis in plants.Curr Opin Plant Biol 19, 81-90.
[23] Zhu Q, Yu S, Zeng D, Liu H, Wang H, Yang Z, Xie X, Shen R, Tan J, Li H, Zhao X, Zhang Q, Chen Y, Guo J, Chen L, Liu Y (2017). Development of ‘‘Purple Endosperm Rice’’ by engineering anthocyanin biosynthesis in the endosperm with a high-efficiency Transgene Stacking System.Mol Plant 10, 918-929.
[1] 田怀东 李菁 田保华 牛鹏飞 李珍 岳忠孝 屈雅娟 姜建芳 王广元 岑慧慧 李南 闫枫. 水稻两性生殖细胞的N-甲基-N-亚硝基脲诱变方法[J]. 植物学报, 2019, 54(5): 0-0.
[2] 王跃星 饶玉春 焦然 周纯 林晗 徐娜 胡娟 胡萍 吴先美. 水稻早衰突变体LS-es1的基因定位及候选基因分析[J]. 植物学报, 2019, 54(5): 0-0.
[3] 刘进 姚晓云 余丽琴 李慧 周慧颖 王嘉宇 黎毛毛. 水稻耐储藏特性三年动态鉴定与QTL分析[J]. 植物学报, 2019, 54(4): 0-0.
[4] 徐云远 种康. 利用低温水浴鉴定水稻苗期耐冷性[J]. 植物学报, 2019, 54(4): 0-0.
[5] 程祝宽. 水稻减数分裂染色体分析方法[J]. 植物学报, 2019, 54(4): 0-0.
[6] 王孝林,王二涛. 根际微生物促进水稻氮利用的机制[J]. 植物学报, 2019, 54(3): 285-287.
[7] 栗露露,殷文超,牛梅,孟文静,张晓星,童红宁. 油菜素甾醇调控水稻盐胁迫应答的作用研究[J]. 植物学报, 2019, 54(2): 185-193.
[8] 叶雯澜,马国兰,袁李亚男,郑士仪,程琳乔,方媛,饶玉春. 水稻细菌性穗枯病的病原特性和抗性研究进展[J]. 植物学报, 2019, 54(2): 277-283.
[9] 陈琳,林焱,陈鹏飞,王绍华,丁艳锋. 水稻响应缺铁的韧皮部汁液蛋白质组学分析[J]. 植物学报, 2019, 54(2): 194-207.
[10] 朱丽, 钱前. 虾青素功能米: 生物强化新思路, 优质米培育新资源[J]. 植物学报, 2019, 54(1): 4-8.
[11] 宋雪薇, 魏解冰, 狄少康, 庞永珍. 花青素转录因子调控机制及代谢工程研究进展[J]. 植物学报, 2019, 54(1): 133-156.
[12] 薛治慧, 种康. 中国科学家在杂种F1克隆繁殖研究领域取得突破性进展[J]. 植物学报, 2019, 54(1): 1-3.
[13] 周亭亭, 饶玉春, 任德勇. 水稻卷叶细胞学与分子机制研究进展[J]. 植物学报, 2018, 53(6): 848-855.
[14] 鲁丹, 王丽, 宋凡, 陶菊红, 张大兵, 袁政. 水稻OsJMJ718基因可选择性多聚腺苷酸化序列的 克隆及生殖发育期表达模式[J]. 植物学报, 2018, 53(5): 594-602.
[15] 刘魏, 童永鳌, 白洁. 水稻雄配子体发育过程中tRNA片段的生物信息学分析[J]. 植物学报, 2018, 53(5): 625-633.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郭莉娟1, 2,王志华1, 2,李捷1 . 美洲鳄梨属植物的叶表皮微形态特征及其分类学意义[J]. Plant Diversity, 2010, 32(03): 189 -203 .
[2] 杜泉滢, 李智, 刘书润, 刘鸿雁. 干旱、半干旱区湖泊周围盐生植物群落的多样性格局及特点[J]. 生物多样性, 2007, 15(3): 271 -281 .
[3] Taylor E. Shaw. Species diversity in restoration plantings: Important factors for increasing the diversity of threatened tree species in the restoration of the Araucaria forest ecosystem[J]. Plant Diversity, 2019, 41(02): 84 -93 .
[4] Fu-Min Wang, Jing-Feng Huang and Xiu-Zhen Wang. Identification of Optimal Hyperspectral Bands for Estimation of Rice Biophysical Parameters[J]. Journal of Integrative Plant Biology, 2008, 50(3): 291 -299 .
[5] 张谧 谢宗强. 21世纪的生态学研究前沿[J]. 植物学报, 2002, 19(01): 121 -124 .
[6] Chen Shou-Liang, Xu Ke-Xue. [J]. Journal of Systematics and Evolution, 1989, 27(3): 190 -196 .
[7] CHANG Sheng-He, YING Jia, ZHANG Ji-Jun, LI Bin, LI Zhen-Sheng. Isolation and Characterization of a BBC1 cDNA from Common Wheat[J]. Journal of Integrative Plant Biology, 2003, 45(7): 878 -882 .
[8] 李树忠. 北京动物园珍贵鸟类的繁殖成果简介[J]. 生物多样性, 1994, 02(3): 181 -183 .
[9] ZHAN Zha_Jun, SUN Han_Dong, WU Hou_Ming and YUE Jian_Min. Chemical Components from the Fungus Englero myces goetzei[J]. Journal of Integrative Plant Biology, 2003, 45(2): 248 -252 .
[10] 柳江群, 尹明宇, 左丝雨, 杨绍斌, 乌云塔娜. 长柄扁桃天然种群表型变异[J]. 植物生态学报, 2017, 41(10): 1091 -1102 .