植物学报 ›› 2017, Vol. 52 ›› Issue (3): 271-276.doi: 10.11983/CBB16203

• 研究报告 • 上一篇    下一篇

利用叶绿素荧光评估草原植物羊草缺磷缺氮状况

李玲玉1,2, 杨浩萌1, 任为波3, 吴新宏3, 黄芳1,*()   

  1. 1中国科学院植物研究所, 光生物学重点实验室, 北京 100093
    2中国科学院大学, 北京 100049
    3中国农业科学院草原研究所, 呼和浩特 010010
  • 收稿日期:2016-10-21 接受日期:2017-01-18 出版日期:2017-05-01 发布日期:2017-05-27
  • 通讯作者: 黄芳 E-mail:fhuang@ibcas.ac.cn
  • 作者简介:

    # 共同第一作者

  • 基金资助:
    国家重点基础研究发展计划(No.2014CB138800)

Assessment of Phosphate and Nitrogen Deficiency in Sheepgrass by Chlorophyll Fluorescence Spectroscopy

Lingyu Li1,2, Haomeng Yang1, Weibo Ren3, Xinhong Wu3, Fang Huang1*   

  1. 1Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    2University of Chinese Academy of Sciences, Beijing 100049, China
    3Institute of Grassland Research, Chinese Academy of Agricultural Science, Hohhot 010010, China
  • Received:2016-10-21 Accepted:2017-01-18 Online:2017-05-01 Published:2017-05-27
  • Contact: Huang Fang E-mail:fhuang@ibcas.ac.cn
  • About author:

    # Co-first authors

摘要:

羊草(Leymus chinensis)是北方草原的重要牧草。准确评估其营养状况, 对维护羊草草原的生产力具有重要意义。以羊草幼苗为材料, 利用能同时表征2个光系统光化学活性的叶绿素荧光检测技术, 对缺氮和缺磷处理下的叶片光化学活性进行分析。结果表明, 缺氮处理20天后羊草叶片叶绿素含量降低近50%。同期缺磷及缺氮处理对PSII功能的影响总体大于PSI。与对照相比, 缺氮叶片的Φ(II)和Φ(I)分别比对照降低了30.3%与38.5%; ETR(II)与ETR(I)分别降低30.8%和28.9%。缺磷处理组Φ(II)和ETR(II)的降低幅度约为缺氮的1/2。这些定量研究结果对及时有效地诊断和区分羊草植物氮磷缺乏状况具有重要的参考价值。

Abstract:

Sheepgrass (Leymus chinensis) is a forage plant species dominant in the north steppes. Accurate assessment of nutritional status of L. chinensis is essential to rational management of the grassland. For accurate assessment, we characterized and compared the photochemical activity of PSII and PSI in L. chinensis under Pi and N deprivation by using chlorophyll fluorescence spectroscopy. The effect of N deficiency on L. chinensis seedlings was greater than Pi deprivation. After 20 days of N-deprivation, chlorophyll content decreased nearly 50%. The activity of PSII was more affected than was PSI on the basis of in situ steady chlorophyll fluorescence measurements and light responsive curves. As compared with control plants, N-deprivated plants showed reduced Φ(II) and Φ(I) by 30.3% and 38.5%, and ETR(II) and ETR(I) were reduced 30.8% and 28.9%. Under Pi deprivation, the decreased values of Φ(II) and ETR(II) were about 1/2 those detected in N-deprivated plants. These quantitative results of chlorophyll fluorescence analysis provide new insights into photochemical characteristics of L. chinensis under N- and Pi-deficiency and also a valuable approach for efficient assessment of the nutritional status of L. chinensis plants.

图1

不同缺素处理对羊草生长(A)和叶绿素含量(B)的影响(平均值±标准差, n=9)实验重复3次, 获得重复性结果。**表示在0.01水平上差异显著(t-检验)。"

表1

不同缺素处理下羊草叶片叶绿素荧光参数的比较(平均值±标准差, n=9)"

Treatments Time (d) Fv/Fm Φ (II) ETR(II) Φ (I) ETR(I) NPQ
Control 0.77±0.01 0.48±0.05 54.70±1.87 0.69±0.05 76.70±2.08 0.89±0.17
-N
-P
13 0.74±0.02
0.77±0.02
0.40±0.04
0.44±0.05
46.65±2.70*
50.54±1.67
0.59±0.03*
0.66±0.06
66.31±3.40
74.60±3.27
1.16±0.10
0.97±0.07
Control 0.78±0.01 0.46±0.06 52.04±2.19 0.67±0.06 75.10±2.13 1.07±0.18
-N 20 0.74±0.02 0.32±0.06* 36.67±2.67* 0.49±0.08* 55.71±6.02* 1.55±0.04*
-P 0.77±0.01 0.41±0.04 47.40±3.38 0.65±0.04 73.30±3.31 1.25±0.26

图2

不同缺素处理下羊草叶片Φ(II) (A)、ETR(II) (B)、Φ(I) (C)和ETR(I) (D)的比较(平均值±标准差, n=9)Φ(II)、ETR(II)、Φ(I)和ETR(I)同表1。实验重复3次, 获得重复性结果。"

图3

不同缺素处理下羊草叶片非光化学猝灭(NPQ)的变化(平均值±标准差, n=9)实验重复3次, 获得重复性结果。"

[1] 白雪, 程军回, 郑淑霞, 詹书侠, 白永飞 (2014). 典型草原建群种羊草对氮磷添加的生理生态响应. 植物生态学报 38, 103-115.
[2] 常杰, 葛滢 (1995). 羊草群落主要营养元素吸收相关性分析. 植物学通报 12(专辑2), 136-141.
[3] 林郑和, 钟秋生, 陈常颂, 游小妹, 陈志辉 (2013). 缺氮条件下不同品种茶树叶片光合特性的变化. 茶叶科学 33, 500-504.
[4] 徐爱东, 邱念伟, 娄苑颖 (2010). 判断玉米幼苗缺氮程度的叶绿素荧光动力学指标. 植物营养与肥料学报 16, 498-503.
[5] Antal T, Mattila H, Hakala-Yatkin M, Tyystjärvi T, Tyystjärvi E (2010). Acclimation of photosynthesis to nitrogen deficiency in Phaseolus vulgaris. Planta 232, 887-898.
[6] Arnon DI (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Phy- siol 24, 1-15.
[7] Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland.Nature 431, 181-184.
[8] Berry J, Bjorkman O (1980). Photosynthetic response and adaptation to temperature in higher plants.Annu Rev Plant Physiol 31, 491-543.
[9] Chen SP, Bai YF, Zhang LX, Han XG (2005). Comparing physiological responses of two dominant grass species to nitrogen addition in Xilin River Basin of China.Environ Exp Bot 53, 65-75.
[10] Foyer C, Spencer C (1986). The relationship between phosphate status and photosynthesis in leaves: effects on intracellular orthophosphate distribution, photosynthesis and assimilate partitioning.Planta 167, 369-375.
[11] Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China.New Phytol 168, 377-385.
[12] Hoagland DR, Arnon DI (1949). The water culture met- hod for growing plants without soil.California Agricultural Experiment Station, Circular 347, 4-32.
[13] Li LY, Yang HM, Ren WB, Liu B, Cheng DM, Wu XH, Gong JR, Peng LW, Huang F (2016). Physiological and biochemical characterization of Sheepgrass (Ley- mus chinensis) reveals insights into photosynthetic apparatus coping with low-phosphate stress condit- ions. J Plant Biol 59, 336-346.
[14] Liu ZP, Chen ZY, Pan J, Li X, Su M, Wang L, Li H, Liu G (2008). Phylogenetic relationships in Leymus(Poa- ceae: Triticeae) revealed by the nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences. Mol Phylogenet Evol 46, 278-289.
[15] Niyogi KK (1999). Photoprotection revisited: genetic and molecular approaches.Annu Rev Plant Physiol Plant Mol Biol 50, 333-359.
[16] Seemann JR, Sharkey TD, Wang JL, Osmond CB (1987). Environmental effects on photosynthesis, nitrogen-use efficiency, and metabolite pools in leaves of sun and shade plants. Plant Physiol 84, 796-802.
[17] Wu P, Ma LG, Hou XL, Wang MY, Wu YR, Liu FY, Deng XW (2003). Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves.Plant Physiol 132, 1260-1271.
[18] Xu ZZ, Zhou GS, Li H (2004). Responses of chlorophyll fluorescence and nitrogen level of Leymus chinensis seedling to changes of soil moisture and temperature. J Environ Sci 16, 666-669.
[19] Zhang ZL, Liao H, Lucas WJ (2014). Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants.J Integr Plant Biol 56, 192-220.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 贾红娟 张军文. 基于MATLAB 的花粉形态量化分析[J]. 植物学报, 2007, 24(04): 511 -515 .
[2] 孙坤 王庆瑞. 西北地区6种堇菜属植物的细胞学研究[J]. 植物学报, 1996, 13(01): 46 -47 .
[3] 潘瑞炽. 植物生长调节剂与扦插生根[J]. 植物学报, 1995, 12(专辑3): 8 -14 .
[4] 马淑梅, 张睿, 孙岩, 刘东军, 郭怡璠, 刘文林, 宋凤英, 杨淑萍, 张举梅, 孙光祖, 张宏纪. 俄罗斯远东及黑龙江省春小麦种质资源的遗传多样性[J]. 植物学报, 2014, 49(2): 150 -160 .
[5] 曹坤方. 植物生殖生态学透视[J]. 植物学报, 1993, 10(02): 15 -23 .
[6] 王琴 杨健 王宇飞. 山东山旺中新世新近发现松科球果[J]. 植物学报, 2000, 17(专辑): 262 -263 .
[7] . Review on the Origin, Evolution and Phylogeny of Marattiles[J]. 植物学报, 2000, 17(专辑): 39 -52 .
[8] 郑中华. 花粉壁的透射电镜标本制备[J]. 植物学报, 1988, 5(03): 182 -184 .
[9] 梁明山 曾宇 周翔 侯留记 李霞. 遗传标记及其在作物品种鉴定中的应用[J]. 植物学报, 2001, 18(03): 257 -265 .
[10] 张峰 上官铁梁. 山西关帝山华北落叶松林的生物量[J]. 植物学报, 1992, 9(04): 51 -52 .