植物学报 ›› 2017, Vol. 52 ›› Issue (2): 202-209.doi: 10.11983/CBB16007

• 研究报告 • 上一篇    下一篇

细枝柃性别表达特性及资源分配

郭金, 杨小艳, 邓洪平*(), 黄琴, 李运婷, 张华雨   

  1. 西南大学生命科学学院, 三峡库区生态环境教育部重点实验室, 重庆 400715
  • 收稿日期:2016-01-13 接受日期:2016-09-04 出版日期:2017-03-01 发布日期:2017-04-05
  • 通讯作者: 邓洪平 E-mail:denghp@swu.edu.cn
  • 作者简介:

    # 共同第一作者

  • 基金资助:
    科技部国家科技基础平台国家标本平台-教学标本子平台运行服务项目(No.2005DKA21403-JK)和国家自然基金(No.31600491)

Sex Expression and Reproduction Allocation in Eurya loquaiana

Jin Guo, Xiaoyan Yang, Hongping Deng*, Qin Huang, Yunting Li, Huayu Zhang   

  1. Key Laboratory of Eco-environment in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
  • Received:2016-01-13 Accepted:2016-09-04 Online:2017-03-01 Published:2017-04-05
  • Contact: Deng Hongping E-mail:denghp@swu.edu.cn
  • About author:

    # Co-first authors

摘要:

已有的资料将柃木属(Eurya)描述为严格的雌雄异株植物, 性别变异现象极为少见。目前仅在柃木(E. japonica)和钝叶柃(E. obtusifolia)等少数种类中报道过两性花的存在。近几年笔者发现细枝柃(E. loquaiana)存在性别变异现象, 性别变异株上具有不同性别类型的花。该文从单花和植株水平分析了细枝柃的性别表达特性, 并对不同类型花的花部构件生物量分配进行比较分析。结果表明, 细枝柃具有6种类型的花, 从单花水平上看, 细枝柃性别有雌性、雄性及两性3种类型; 细枝柃性别在植株水平上体现较为复杂, 有雌株, 雄株, 雌花和两性花同株, 雄花和两性花同株, 雌雄异花同株及雌花、雄花、两性花同株6种类型; 在细枝柃花部构件生物量分配中, 雄花(包括雄株花和变异株雄花)花部构件生物量分配中雄蕊生物量的分配低于雌花(包括雌株花和变异株雌花)中雌蕊生物量的分配; 两性花中, 雄蕊生物量分配低于雌蕊, 这是其优化资源分配的手段, 进而获取最大适合度收益。

Abstract:

The genus of Eurya Thunb. was described as strictly dioecious, and the gender variation was extremely rare. Until now, bisexual flowers had only been reported in a few species such as E. japonica and E. obtusifolia. We recently found gender variation in E. loquaiana with different types of flowers. Here, we analyzed sex expression characteristics at the flower and plant levels and compared reproduction allocation between different kinds of flowers. E. loquaiana had six types of flowers: pistillate flower, staminate flower, pistillate flower with staminode, staminate flower with pistillode, hermaphrodite flower, and sterile flower. At the flower level, the genders of E. loquaiana were female, male, and bisexual; the gender at the plant level was complicated. E. loquaiana had six gender types: gynoecius and roesious, gynomonoecy, and romonoecy, monoecious and trimonoecious; Stamen biomass allocation was less in male flowers (including the male plant flowers and gender variant plants) than pistil biomass allocation in female flowers (including the female plant and gender variant plants). In bisexual flowers, the stamen biomass allocation was less than the pistil biomass allocation. This is a means to optimize its resource allocation and thus obtain the most fitness benefits.

表1

缙云山细枝柃性别变异株的分布"

Site No. Geographic (N) Coordinates (E) Alt. (m)
SM1 29°49′48″ 106°22′44″ 859
SM2 29°50′09″ 106°22′41″ 753
SM3 29°50′05″ 106°22′36″ 753
FX1 29°49′37″ 106°23′31″ 890

表2

细枝柃不同性别植株上花的特征"

Flower type Petal Style Ovary Ovule number Stamens number Anther Filament
The flower of the female plant The brim coils instead outwards 3 gap in general Peak green,
3 loculus
21-45 - - -
The pistillate flower of the gender variant plant The brim coils instead outwards 1-4 gap Pink with chalky white, peak green,1-3 loculus 12-27 - - -
The pistillate flower with staminode The brim coils instead outwards slightly 2-3 gap, 4 gap rarely Pink or peak green,1-3 loculus 1-30 1-8 Similar to anther spots, shrinking, no pollen Filiform, thre- adiness
The hermaphrodite flower The brim coils instead outwards slightly 1-3 gap Pink or peak green, 1-3 loculus 1-29 5-10 Linear-hastate, orange Tenuous
The flower of the male plant No crolling - - - 8-16 Linear-hastate, orange Tenuous
The staminate flower of the gender variant plant No crolling - - - 8-10 Linear-hastate, orange Tenuous
The staminate flower with pistillode The brim coils instead outwards slightly Filiform
or strip
Growing No 6-12 Linear-hastate, orange Tenuous
The sterile flower The brim coils instead outwards slightly Filiform, 1-2 gap No growth No 1-6 Similar to anther spots, shrinking, no pollen Filiform, threadiness

图1

缙云山细枝柃性别变异株分布信息"

表3

细枝柃花部雌雄蕊的基本特征"

Flower type Pistil length (mm) Ovary size
(length×width)
Stamen length
(mm)
Anther size (length×width)
The flower of the female plant 4.77±0.37 1.32±0.11×1.10±0.07 / /
The flower of the male plant / / 3.48±0.21 1.28±0.18×0.55±0.10
The pistillate flower of the gender variant plant 4.24±0.28* 1.38±0.16×0.92±0.08* / /
The staminate flower of the gender variant plant / / 2.8±0.27* 0.93±0.15×0.45±0.08*
The hermaphrodite flower of the gender variant plant 4.38±0.47 1.51±0.58×0.95±0.41 3.01±0.31 1.14±0.18×0.50±0.12

表4

细枝柃花部各构件生物量"

Flower type The biomass of pistil
(g·100 flowers-1)
The biomass of
stamen
(g·100 flowers-1)
The biomass of the rest
of flowers
(g·100 flowers-1)
The total biomass
(g·100 flowers-1)
The flower of the female plant 0.0349 / 0.1815 0.2164
The flower of the male plant / 0.0503 0.2948 0.3451
The pistillate flower of the gender variant plant / 0.0226 0.1775 0.2001
The staminate flower of the gender variant plant 0.0182 / 0.1009 0.1191
The hermaphrodite flower of the gender variant plant 0.0171 0.0155 0.1357 0.1683

表5

细枝柃花部各构件生物量分配"

Flower type The ratio of pistil (%) The ratio of stamen (%)
The flower of the female plant 16.13 /
The flower of the male plant / 14.58
The pistillate flower of the gender variant plant / 11.29
The staminate flower of the gender variant plant 15.28 /
The hermaphrodite flower of the gender variant plant 10.16 9.21
[1] 曹宗巽 (1965). 植物的性别分化及其控制. 生物学通报 2, 6-9.
[2] 陈封怀 (1991). 广东植物志(第一卷). 广州: 广东科技出版社. pp. 838-843.
[3] 傅国立 (2000). 中国高等植物. 青岛: 青岛出版社. pp. 511-513.
[4] 林来官 (1998). 中国植物志(第50卷第1分册). 北京: 科学出版社. pp. 170-176.
[5] 王茜, 邓洪平, 丁博, 周光林 (2012). 钝叶柃不同性别花的花部形态与传粉特征比较. 生态学报 12, 3921-3930.
[6] 向远寅 (1984). 生物的性别与性别转变. 新疆林业 2, 44-50.
[7] 熊济华 (1990). 四川植物志(第8卷). 成都: 四川民族出版社. pp. 215.
[8] 张大勇 (2004). 植物生活史进化与繁殖生态学. 北京: 科学出版社. pp. 325-326.
[9] 张志良, 瞿伟菁, 李小方 (2009). 植物生理学实验指导. 北京: 高等教育出版社. pp. 223-225.
[10] Adam H, Collin M, Richaud F, Beulé T, Cros D (2011). Environmental regulation of sex determination in oil palm: current knowledge and insights from other species.Ann Bot-London 108, 1529-1537.
[11] Barrett SCH (2000). The evolution and function of stylar polymorphisms in flowering plants.Ann Bot-London 85, 253-265.
[12] Borthwick HA, Scully NJ (1954). Photoperiodic responses of hemp.Int J Plant Sci 116, 14-29.
[13] Caporali E, Carboni A, Galli MG, Rossi G, Spada A (1994). Development of male and female flower inAsparagus officinalis. Search for point of transition from hermaphroditic to unisexual development pathway. Sex Plant Reprod 7, 239-249.
[14] Charlesworth D, Charlesworth B (1987). The effect of investment in attractive structures on allocation to male and female functions in plants.Evolution 41, 948-968.
[15] Dafni A, Shmida A (2002). Andromonecy inColchicum stevenii C. Koch (Liliaceae)—frequency, phenology, and reserve allocation. Israel J Plant Sci 50, 51-57.
[16] Dellaporta SL, Urrea A (1993). Sex determination in flowe- ring plants.Plant Cell 5, 124-125.
[17] Eckert CG, Barrett SCH (1994). Tristyly, self-compatibility and floral variation in Decodon verticillatus(Lythraceae). Biol J Linn Soc 53, 1-30.
[18] Givnish TJ (1980). Ecological constraints on the evolution of breeding systems in seed plants—dioecy and dispersal in Gymnosperms.Evolution 34, 959-972.
[19] Golenberg EM, West NW (2013). Hormonal interactions and gene regulation can link monoecy and environmental plasticity to the evolution of dioecy in plants. Am J Bot 100, 1022-1037.
[20] Hader LD, Barrett SCH (2006). Ecology and evolution of flowers. New York: Oxford University Press. pp. 50-85.
[21] Hormaza JI, Polito VS (1996). Pistillate and staminate flower development in dioeciousPistacia vera(Anacardiaceae). Am J Bot 83, 759-766.
[22] Humeau L, Pailler T, Thompson JD (1999). Cryptic dioecy and leaky dioecy in edemic species of Dombeya(Sterculiaceae) on La Réunion. Am J Bot 86, 1437-1447.
[23] Korpelainen H (1998). Labile sex expression in plants.Biol Rev 73, 157-180.
[24] Lloyd DG (1980). Sexual strategies in plants. III. A quantitative method for describing the gender of plants.New Zeal J Bot 18, 103-108.
[25] Mayer SS, Charlesworth D (1991). Cryptic dioecy in flowe- ring plants.Trend Ecol Evol 6, 320-325.
[26] McArthur ED (1977). Environmentally induced changes of sex expression inAtriplex canescens. Heredity 38, 97-103.
[27] Meagher TR (1988). Sex determination in plants. New York: Oxford University Press. pp. 113-125.
[28] Miller JS, Venable DL (2003). Floral morphometrics and the evolution of sexual dimorphism inLycium(Solanaceae). Evolution 57, 74-86.
[29] Murata H (1991). Variation of sex expression and flower structure in a population ofEurya japonica Thunb. J Jap Bot 66, 229-234.
[30] Nanami S, Hideyuki K, Takuo Y (2004). Sex change towards female in dyingAcer rufinerve trees. Ann Bot 93, 733-740.
[31] Rottenberg A (1998). Sex ratio and gender stability in the dioecious plants of Israel.Bot J Linn Soc 128, 137-148.
[32] Rottenberg A (2000). Fertility of exceptional bisexual individuals in four dioecious plant species.Sex Plant Reprod 12, 219-211.
[33] Sarkissian TS, Barrett SCH, Harder LD (2001). Gender variation inSagittaria latifolia (Alismataceae): is size all that matters? Ecology 82, 360-373.
[34] Solomon BP (1985). Environmentally influenced changes in sex expression in an andromonoecious plant.Ecology 66, 1321-1332.
[35] Standley LA (1985). Paradioecy and gender ratios inCarex macrocephala (Cyperaceae). Am Midl Nat 13, 283-286.
[36] Venkatasamy S, Khittoo G, Keeley S (2007). Leaky dioecy inDiospyros(Ebenaceae) endemic to the Island of Mauritius. Plant Ecol 89, 139-146.
[37] Vesque MJ (1895). Revision of genusEurya Thunb. Bulletin Société Botanique France 42, 160.
[38] Zhang DY, Jiang XH (2000). Costly solicitation, timing of offspring onflict, and resource allocation in plants.Ann Bot 86, 123-131.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 廖景平 吴七根. 九翅豆蔻种子的解剖学和组织化学研究[J]. 植物学报, 1994, 11(专辑): 91 .
[2] 钱迎倩. 生物多样性的几个问题(续)[J]. 植物学报, 1998, 15(06): 1 -18 .
[3] 张秀娟 梅莉 王政权 韩有志. 细根分解研究及其存在的问题[J]. 植物学报, 2005, 22(02): 246 -254 .
[4] 程龙军 郭得平 葛红娟. 甘薯块根特异蛋白——Sporamin的研究进展[J]. 植物学报, 2001, 18(06): 672 -677 .
[5] 汤彦承. 国际植物命名法规简介VII[J]. 植物学报, 1984, 2(06): 49 -54 .
[6] 邓传远, 辛桂亮, 张万超, 郭素枝, 薛秋华, 赖钟雄, 叶露莹. 红树族植物次生木质部附物纹孔的电镜观测[J]. 植物学报, 2015, 50(1): 90 -99 .
[7] 杨小林, 张希明, 李义玲, 李绍才, 孙海龙. 塔克拉玛干沙漠腹地3种植物根系构型及其生境适应策略[J]. 植物生态学报, 2008, 32(6): 1268 -1276 .
[8] 张金屯, Pickett S. T. A. “城-郊-乡”森林生态样带植被变化梯度分析[J]. 植物生态学报, 1998, 22(5): 392 -397 .
[9] 季方, 马英杰, 樊自立. 塔里木河冲积平原胡杨林的土壤水分状况研究[J]. 植物生态学报, 2001, 25(1): 17 -21 .
[10] 蒋馥蔚, 江洪, 李巍, 余树全, 曾波, 王艳红. 不同起源时期的3种被子植物对酸雨胁迫响应的光合生理生态特征[J]. 植物生态学报, 2009, 33(1): 125 -133 .