植物学报 ›› 2017, Vol. 52 ›› Issue (2): 128-147.DOI: 10.11983/CBB16001

• 特邀综述 • 上一篇    下一篇

植物质膜蛋白质组的逆境应答研究进展

邱丽丽1,2, 赵琪1,2, 张玉红1,*(), 戴绍军2,*()   

  1. 1东北林业大学森林植物生态学教育部重点实验室, 哈尔滨 150040
    2东北林业大学盐碱地生物资源环境研究中心,东北油田盐碱植被恢复与重建教育部重点实验室, 哈尔滨 150040
  • 收稿日期:2016-01-05 接受日期:2016-06-14 出版日期:2017-03-01 发布日期:2017-04-05
  • 通讯作者: 张玉红,戴绍军
  • 作者简介:

    # 共同第一作者

  • 基金资助:
    国家自然科学基金(No.31270310, No.31370630)和中央高校基本科研业务费专项资金(No.2572014EA04)

Research Advances in Stress-responsive Plant Plasma Membrane Proteomic

Lili Qiu1,2, Qi Zhao1,2, Yuhong Zhang1*, Shaojun Dai2*   

  1. 1Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
    2Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin 150040, China
  • Received:2016-01-05 Accepted:2016-06-14 Online:2017-03-01 Published:2017-04-05
  • Contact: Zhang Yuhong,Dai Shaojun
  • About author:

    # Co-first authors

摘要: 质膜作为原生质体与外界环境的屏障, 除了维持正常的细胞内稳态和营养状况, 还参与感知和应答各种环境胁迫。近年来, 植物质膜蛋白质组学研究为深入分析植物应答不同生物和非生物胁迫的分子机制提供了重要信息, 已经报道了模式植物拟南芥(Arabidopsis thaliana)和水稻(Oryza sativa)等10种植物质膜应对生物胁迫(白叶枯病菌(Xanthomonas oryzae pv. oryzae)感染)与非生物胁迫(冷、盐、水淹、渗透、高pH值、Fe缺乏及过量、氮素、脱落酸、壳聚糖和壳寡糖)过程的蛋白质丰度模式变化。通过整合分析植物质膜响应逆境的蛋白质组学研究结果, 揭示了质膜在植物应答逆境胁迫过程中的重要作用。植物通过调节转运蛋白、通道蛋白及膜泡运输相关蛋白的丰度变化促进细胞内外的信号传递、物质交换与运输; 同时利用膜相关的G蛋白、Ca2+信号、磷酸肌醇信号途径及BR信号途径等多种信号通路, 通过蛋白质可逆磷酸化作用感知和传递胁迫信号, 调节植物抵御胁迫。研究结果为从蛋白质水平认识质膜逆境应答分子调控机制提供了新线索。

Abstract: The plasma membrane (PM) is a crucial barrier between the protoplast and environment. In addition to maintaining normal cellular homeostasis and plant nutrient status, the PM perceives and responds to various environmental stress. In recent years, plant PM proteomic investigations provide valuable information for insights into the molecular mechanisms of the plant in response to different biotic and abiotic stimuli. Plant PM proteomics have revealed diverse PM protein expression patterns in 10 plant species including Arabidopsis thaliana and Oryza sativa in response to biotic stress (e.g., Xanthomonas oryzae pv. oryzae infection) and abiotic stress (e.g., cold, salt, flooding, osmosis, high pH, Fe, nitrogen, abscisic acid, chitosan, and chitooligosaccharide). Studies have revealed the important role of the plant plasma membrane in response to stress by integrative analysis of plant PM proteomic information from recent publications, including regulation of intracellular and extracellular signal transmission; material exchange and transport by transporter, channel protein and vesicle transport-related proteins; and perception and transmission of the stress signal by signal transduction pathways, such as membrane-associated G protein, Ca2+ signaling transduction, the phosphoinositide signaling pathway, the brassinosteroid signal pathway and reversible phosphorylation of proteins, adapting the plant to stress. The research provides new clues at the protein level for understanding the molecular regulation mechanism of the PM stress response.