植物学报 ›› 2016, Vol. 51 ›› Issue (5): 691-704.doi: 10.11983/CBB15172

• 专题论坛 • 上一篇    下一篇

笃斯越桔化学成分及其功能活性的研究进展

苏上1,2, 王丽金1,2, 吴杰1,2, 李冰1,3, 王伟伟1,2, 王亮生1,*()   

  1. 1中国科学院植物研究所北京植物园/中国科学院北方资源植物重点实验室, 北京 100093
    2中国科学院大学, 北京 100049
    3湖南农业大学生物科学技术学院, 长沙 410128
  • 收稿日期:2015-09-28 接受日期:2016-02-14 出版日期:2016-09-01 发布日期:2016-09-27
  • 通讯作者: 王亮生 E-mail:wanglsh@ibcas.ac.cn
  • 作者简介:

    # 共同第一作者

  • 基金资助:
    国家自然科学基金(No.31270376)、国际科技交流与合作项目(No.2011DFA30560-2)和欧盟第七框架项目(No.FP7-613793)

Review: Chemical Compositions and Functions of Vaccinium uliginosum

Shang Su1,2, Lijin Wang1,2, Jie Wu1,2, Bing Li1,3, Weiwei Wang1,2, Liangsheng Wang1*   

  1. 1Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    2University of Chinese Academy of Sciences, Beijing 100049, China
    3College of Bological Science and Technology, Hunan Agricultural University, Changsha 410128, China
  • Received:2015-09-28 Accepted:2016-02-14 Online:2016-09-01 Published:2016-09-27
  • Contact: Wang Liangsheng E-mail:wanglsh@ibcas.ac.cn
  • About author:

    # Co-first authors

摘要:

笃斯越桔(Vaccinium uliginosum)因其富含花青苷等生物活性成分而备受关注。迄今为止, 从笃斯越桔果实中已鉴定出24种花青苷、32种黄酮醇苷、24种有机酸、28种芳香成分及少量儿茶素及其低聚物。同时, 笃斯越桔还含有丰富的矿质元素、维生素及氨基酸等营养成分。大量的体内和体外实验结果表明, 笃斯越桔具有强大的抗氧化、抗衰老、抗炎、抗癌、提高记忆力、预防心血管疾病和保护视力等生理活性。该文介绍了笃斯越桔资源分布情况及其遗传背景, 综述了其果实和叶片中的主要功能成分、营养物质及芳香成分的组成和含量, 讨论了遗传和环境等因素对其活性物质合成和积累的影响, 以期为其新品种选育及综合利用提供参考依据。

Abstract:

Recently, Vaccinium uliginosum, also known as bog bilberry or bog blueberry, has been found rich in anthocyanins and flavonols. The plant was suggested to possess a wide variety of health benefits both in vitro and in vivo, such as antioxidative activity, anticancer, anti-vascular disease effects and anti-memory decline effect. The berries contain 24 anthocyanins, 32 flavonol glycosides, 24 organic acids, 28 aromatic compounds and some catechin and its oligomers. Mineral elements, vitamins, amino acids and other nutrients have been measured as well. This paper summarizes all these components and their contents in V. uliginosum. The genetic and environmental factors that affect the synthesis and accumulation of these health-benefit compositions are discussed. This review will have great significance for comprehensive study and further development and use of V. uliginosum.

图1

笃斯越桔中花青苷(A)和黄酮醇苷(B)的结构"

表1

笃斯越桔果实中的花青苷成分"

序号 名称 [M+H]+ MS2 MS3 参考文献
1 飞燕草素-3-O-半乳糖苷 465 303 303, 257 a; c; d; e; f; h; j; k
2 飞燕草素-3-O-葡萄糖苷 465 303 303, 257 a; b; c; d; e; f; g; h; i; j; k
3 飞燕草素-3-O-阿拉伯糖苷 435 303 303, 257 a; b; c; d; e; f; g; h; j; k
4 飞燕草素-木糖苷 435 303 257, 303, 229 f
5 飞燕草素-3, 5-双葡萄糖苷 627 (M+) 303, 465 g
6 飞燕草素-3-(6’’-乙酰基)-半乳糖苷 507 (M+) 317 g
7 矢车菊素-3-O-半乳糖苷 449 287 287 a; c; d; e; f; i; j; k
8 矢车菊素-3-O-葡萄糖苷 449 287 287 a; b; c; d; e; f; g; h; j; k
9 矢车菊素-3-阿拉伯糖苷 419 287 287 a; c; e; f; h; j
10 矢车菊素-木糖苷 419 287 f
11 矮牵牛素-3-O-半乳糖苷 479 317 302, 317 a; c; d; e; f; h; j; k
12 矮牵牛素-3-O-葡萄糖苷 479 317 302, 317 a; b; c; d; e; f; g; h; j; k
13 矮牵牛素-3-O-阿拉伯糖苷 449 317 302, 317 a; c; d; f; h; k
14 矮牵牛素-3-O-木糖苷 449 317 302, 317 f; j
15 矮牵牛素-3-(6’’-乙酰基)-半乳糖苷 521 (M+) 331 g
16 芍药花素-3-O-半乳糖苷 463 301 286, 301 a; c; d; e; f; h; j; k
17 芍药花素-3-O-葡萄糖苷 463 301 286 a; c; f; g; k
18 芍药花素-3-O-阿拉伯糖苷 433 301 286, 301 a; e; f
19 芍药花素-木糖苷 433 301 286, 301 f
20 锦葵素-3-O-半乳糖苷 493 331 299, 315, 287, 270, 179 a; c; d; e; f; h; i; j; k
21 锦葵素-3-O-葡萄糖苷 493 331 315, 299, 287, 270, 331 a; b; c; d; e; f; g; h; i; j; k
22 锦葵素-3-O-阿拉伯糖苷 463 331 315, 299, 287, 270, 331 a; c; d; e; f; g; h; i; j; k
23 锦葵素-3-O-木糖苷 463 331 315, 299, 287, 270, 331 f; j; k
24 锦葵素 3-(6-咖啡酰)-葡萄糖苷
或锦葵素-3, 5-双葡萄糖苷
655 (M+) 331 g

表2

笃斯越桔果实中黄酮醇苷成分"

序号 名称 [M+H]+ MS2 MS碎片 参考文献
1 杨梅酮-半乳糖苷 481 319 273, 301, 165, 245, 153 b
2 杨梅酮-葡萄糖苷 481 319 273, 301, 245, 165, 263 b
3 杨梅酮-葡萄糖醛酸苷 495 319 273, 301, 245, 165 b; e
4 杨梅酮-3-O-阿拉伯糖苷 451 319 273, 301, 245, 165, 153 b; f
5 杨梅酮-3-O-己糖苷 319, 503, e; f
6 槲皮素-3-O-半乳糖苷 465 303 303, 257, 229, 285, 165 a; b; f
7 槲皮素-3-O-葡萄糖醛酸苷 479 303 257, 229, 285, 165, 247 b; e; f
8 槲皮素-3-O-葡萄糖苷 465 303 257, 229, 285, 165, 247 a; b; f
9 槲皮素-3-O-阿拉伯糖苷 435 303 303, 257, 229, 285, 165 a; b; d; e; f
10 槲皮素-呋喃阿拉伯糖苷 435 303 257, 229, 285, 165, 303 e
11 槲皮素衍生物 493 303 257, 229, 285, 165, 247 b
12 槲皮素-鼠李糖苷 449 303 257, 229, 285, 165, 303 e
13 槲皮素-3-乙酰基葡萄糖苷 303, 507, 529 a
14 槲皮素-3-芸香糖苷 609 (M+) 331 c
15 槲皮素 301 (M+) 286, 259 c
16 西伯利亚落叶松黄酮-半乳糖苷 495 333 303, 257, 229, 285, 165 b
17 西伯利亚落叶松黄酮-葡萄糖苷 495 333 b
18 西伯利亚落叶松黄酮-葡萄糖醛酸苷 509 333 318, 277, 301, 273, 165 b; e
19 西伯利亚落叶松黄酮-阿拉伯糖苷 465 333 318, 277, 301, 273, 165 b
20 西伯利亚落叶松黄酮-3-O-己糖苷 333, 517 f; e
21 异鼠李素-半乳糖苷 479 317 302, 285 b
22 异鼠李素-葡萄糖苷 479 317 b
23 异鼠李素-葡萄糖醛酸苷 493 317 302, 285 b; e
24 异鼠李素-阿拉伯糖苷 449 317 302, 285 b
25 异鼠李素-3-O-己糖苷 317, 501 f; e
26 丁香亭-3-O-半乳糖苷 509 347 153, 287, 332, 315, 165 b; d; f
27 丁香亭-3-O-葡萄糖苷 509 347 b; d; f
28 丁香亭-阿拉伯糖苷 479 347 291, 153, 287, 315, 332 b
29 丁香亭衍生物 537 347, 518 501, 486, 264, 245 e
30 山奈酚-己糖苷 449 287 241, 287, 165, 213 b; e
31 山奈酚-葡糖糖醛酸苷 463 287 241, 213, 165, 287 e
32 山奈酚-戊糖苷 419 287 241, 165, 213, 287, 258 e

表3

笃斯越桔果实中的有机酸成分及其含量"

序号 中文名称 英文名称 定量方法(标准品) 含量(单位) 参考文献
1 羟基肉桂酸 Hydroxycinnamic acid HPLC (绿原酸) 54.0 (mg∙100 g-1 DW) Kähkönen et al., 2001
2 羟基苯甲酸 Hydroxybenzoic acid HPLC (没食子酸) 4.3 (mg∙100 g-1 DW)
3 原儿茶酸 Protocatechuic acid HPLC-MS-NMR Masuoka et al., 2007
4 丁香酸 Syringic acid HPLC-MS-NMR
5 邻位苯甲酰羟苯基
乙酸衍生物A
Vacciuligin A HPLC-MS-NMR
6 邻位苯甲酰羟苯基
乙酸衍生物B
Vacciuligin B HPLC-MS-NMR
7 绿原酸 Chlorogenic acid HPLC-MS (绿原酸) <1.0 (μg∙g-1 FW) Taruscio et al., 2004
8 ρ-香豆酸 ρ-coumaric acid HPLC-MS (绿原酸) 78.9 (μg∙g-1 FW)
9 阿魏酸 Ferulic acid HPLC-MS (绿原酸) 69.1 (μg∙g-1 FW)
10 咖啡酸 Caffeic acid HPLC-MS (绿原酸) 142.0 (μg∙g-1 FW)
11 3-咖啡酰奎宁酸 3-caffeoylquinic acid HPLC-MS (绿原酸) 0.127 (mg∙g-1 DW) Kusznierewicz et al., 2012
12 5-咖啡酰奎宁酸 5-caffeoylquinic acid HPLC-MS (绿原酸) 1.019 (mg∙g-1 DW)
13 5-阿魏酰奎宁酸 Feruloylquinic acid HPLC-MS (绿原酸) 1.471 (mg∙g-1 DW)
14 草酸 Oxalic acid HPLC (草酸) 0.53 (g∙L-1) 魏铭等, 2014 *
15 奎宁酸 Quinic acid HPLC (奎宁酸) 8.34 (g∙L-1)
16 苹果酸 Malic acid HPLC (苹果酸) 3.70 (g∙L-1)
17 莽草酸 Shikimic acid HPLC (莽草酸) 0.03 (g∙L-1)
18 柠檬酸 Citric acid HPLC (柠檬酸) 2.94 (g∙L-1)
19 乙酸 Acetic acid HPLC (乙酸) 微量
20 乌头酸 Aconitic acid 210-440 (mg∙100 g-1) 朱智明, 1990
21 富马酸 Fumaric acid 13-39 (mg∙100 g-1)
22 琥珀酸 Succinic acid 8-27 (mg∙100 g-1)
23 酒石酸 Tartaric acid 2 (mg∙100 g-1)
24 戊二酸 Glutaric acid 3 (mg∙100 g-1)

表4

笃斯越桔果实的香气成分"

序号 中文名称 英文名称 含量
(mg∙kg-1 FW)
醇类
1 3-甲基丁醇-(1) 3-methylbutan-1-ol 微量
2 戊醇-(1) Pentan-1-ol 微量
3 己醇-(1) Hexan-1-ol 0.05
4 顺式-3-己醇-(1) cis-3-hexen-1-ol 0.06
5 反式-2-己醇-(1) trans-2-hexen-1-ol 0.04
6 辛醇-(1) Octan-1-ol 微量
7 里哪醇(芳樟醇) Linalool 微量
8 α-松油醇 α-terpineol 极微量
9 香叶烯醇 Myrcenol 微量
10 橙花醇 Nerol 微量
酸类
11 乙酸 Acetic acid 1.1
12 丁酸 Butanoic acid 0.005
13 2-甲基丁酸 2-methylbutanoic acid 0.02
14 己酸 Hexanoic acid 0.07
羰基化合物类
15 己醛 Hexanal 微量
16 反式-2-己烯醛 trans-2-hexenal 0.02
芳香族化合物类
17 苯甲醇 Benzylalcohol 0.01
18 2-苯乙醇 2-phenylethanol 极微量
19 苯酚 Phenol 0.01
20 反式-肉桂醇 trans-cinnamyl acohol 0.01
21 愈创木酚 Guaiacol 微量
22 邻苯二酚 Pyrocatechol 微量
23 2-甲氧基-5-
乙烯基苯酚
2-methoxy-5-
vinylphenol
0.06
24 4-乙烯基苯酚 4-vinylphenol 0.07
25 苯甲醛 Benzaldehyd 极微量
26 香草醛 Vanillin 0.01
其它
27 柠檬烯 Limonene 微量
28 戊基呋喃 Pentylfuran 微量

图2

笃斯越桔果实中主要儿茶素及原花青素结构"

表5

不同地理分布区笃斯越桔果实中花青苷的组成及其含量"

国家 采样区域 参考纬度 分析方法 定量方法(单位) 花青苷组成及含量 参考文献
Dp糖苷 Cy糖苷 Pt糖苷 Pn糖苷 Mv糖苷 总花青苷
芬兰 南部地区 60°23′-
61°25′ N
HPLC-DAD-ESI-MS 外标法, 以矢车菊素-3-葡萄糖苷为标准品 (mg∙100 g-1DW) 290-
401
57-
92
207-
261
41-
68
403-
646
1077-
1319
Lätti et al., 2010
中部地区 62°56′-
63°49′ N
355-
464
58-
134
251-
308
47-
89
562-
762
1307-
1676
北部地区 66°03′-
68°34′ N
459-
558
128-
149
259-
336
52-
73
357-
559
1268-
1667
波兰 北部地区
(奥谢克附近)
50°31′ N * HPLC-DAD-ESI-MS 外标法, 以矢车菊素-3-葡萄糖苷为标准品 (mg∙g-1DW ) 4 3 2 1 4 14 Kuszniere- wicz et al., 2012
中国 小兴安岭地区 46°21′-
49°21′ N
HPLC-DAD-ESI-MS 外标法, 以矢车菊素-3-葡萄糖苷为标准品 (mg∙100 g-1FW) 24-38 9-17 18-29 4-8 37-57 94-
150
Wang et al., 2014b
北部地区 * HPLC-DAD-ESI-MS 外标法, 以矢车菊素-3-葡萄糖苷为标准品 (mg∙kg-1 FW) 5 3 4 1 8 21 Chen et al., 2014
日本 中部地区
(群马县附近)
36°41′ N * HPLC-
DAD
外标法, 以矢车菊素-3-葡萄糖苷为标准品 (mg∙100 g-1FW ) 37 8 24 1 92 162 Masuoka et al., 2007
美国 西北部
(肖肖尼附近)
35°58′ N * HPLC-DAD-MS 外标法, 以矢车菊素及飞燕草素为标准品 (μg∙g-1FW) 225 99 53 10 65 451 Taruscio et al., 2004
505 207 114 41.9 160 1028
1 邓健, 陈于澍, 赵树年 (1990). 越桔亚科植物化学成分研究进展. 天然产物研究与开发 1, 73-80.
2 杜延如, 李淑贤, 姚忠文 (1993). 笃斯越桔(Vaccinium uliginosum L.)的营养学研究. 哈尔滨师范大学自然科学学报 9, 95-96.
3 耿星河, 苏亚拉图, 敖日格尔, 金凤, 哈斯巴根 (2006). 笃斯越桔阴干果实的营养成分及其食用价值分析. 内蒙古师范大学学报(自然科学汉文版) 35, 223-225.
4 顾姻, 贺善安, 於虹, 王传永, 吴文龙 (2001). 蓝浆果与蔓越桔(第1版). 北京: 中国农业出版社. pp. 29-31.
5 郝瑞 (1979). 长白山笃斯越桔的调查研究. 园艺学报 6, 87-93.
6 李亚东, 孟凡丽, 郑毅男, 苏晓田 (2004). 不同基因型越橘果实中4种花色苷含量的研究. 园艺学报 31, 367-368.
7 刘静波, 林松毅, 王作昭, 王二雷 (2007). 笃斯越桔叶片黄酮类化合物分离组分I结构鉴定. 食品科学 28, 89-91.
8 刘荣, 赵静, 王振宇, 王向宏 (2011). 笃斯越桔花色苷对高脂血症大鼠血脂水平的影响. 食品工业科技 32, 381-382, 452.
9 逯越, 林松毅, 张燕, 刘静波 (2008). 笃斯越桔黄酮类化合物水解制备槲皮素的技术研究. 食品科学 29, 323-326.
10 马俊莹, 张悦 (2002). 笃斯越桔新变种. 植物研究 22, 8.
11 马田田 (2001). 笃斯越桔叶营养成分分析. 特产研究 23, 19-21.
12 孟凡丽 (2003). 越橘果实中花色苷的提取分离、定量和结构鉴定研究. 硕士论文. 长春: 吉林农业大学. pp. 11-16.
13 曲路平, 李亚东, 郝瑞 (1992). 中国东北地区越桔属植物染色体数目研究. 园艺学报 19, 11-14.
14 屠鹏飞, 胡迎庆, 刘江云 (1996). 越桔属植物的化学成分与开发价值. 中草药 9, 565-568.
15 王柏林, 刘海军, 杨瑞华 (2010). 大兴安岭笃斯越橘分布储量生产调研报告. 农村实用科技信息 8, 20.
16 王静萍 (1992). 越桔属植物果实的化学成分研究进展. 植物学通报 9, 34-37.
17 王作昭, 刘静波, 林松毅, 王二雷 (2006). 笃斯越桔黄酮类化合物提取技术的试验研究. 食品科学 27, 391-394.
18 魏铭, 顾盼, 李程洁, 杨航宇, 刘树勋, 张嘉月, 颜志秀, 张柏林, 朱保庆 (2014). 高效液相色谱法测定笃斯越桔制品中7种有机酸的含量. 中国酿造 33, 145-148.
19 解奇明, 徐娟, 庞东芬 (1992). 小浆果类植物果汁气息的研究(浆果的GC分析). 国外林业 3, 26-28.
20 杨桂霞, 范海林, 郑毅男, 李亚东 (2005). 笃斯越橘果实中黄酮类化合物的分离鉴定. 吉林农业大学学报 27, 643-644, 648.
21 印万芬 (1984). 笃斯越桔和越桔的化学成分及其利用. 特产科学实验 1, 31-34.
22 印万芬 (1986). 日本产高山植物的染色体数及其分布特点. 植物学通报 4, 121-135.
23 臧建磊, 李亚东, 刘庆忠, 宗晓娟, 王甲威 (2011). 笃斯越橘CBF基因的克隆及序列分析. 吉林农业大学学报 33, 532-535.
24 张安格, 徐娟 (1992). 北方小浆果植物果汁气息的研究 I. Vaccinium spp.的GC分析. 中国野生植物资源 3, 10-14.
25 张希德 (1990). 笃斯越桔新变种——白果笃斯. 北方园艺 Z1, 61.
26 朱智明 (1990). 野生笃斯果的营养和经济价值评述. 生物学杂志 37, 18-22.
27 宗长玲, 邓萌, 宗成文, 曹后男, 李文剑 (2011). 笃斯越桔研究进展. 北方园艺 12, 173-176.
28 Albert KR, Mikkelsen TN, Ro-Poulsen H (2008). Ambient UV-B radiation decreases photosynthesis in high arctic Vaccinium uliginosum.Physiol Plant 133, 199-210.
29 Alsos IG, Engelskjon T, Gielly L, Taberlet P, Brochmann C (2005). Impact of ice ages on circumpolar molecular diversity: insights from an ecological key species.Mol Ecol 14, 2739-2753.
30 Andersen OM (1987). Anthocyanins in fruits of Vaccinium uliginosum L (bog whortleberry).J Food Sci 52, 665-666.
31 Bae JY, Lim SS, Kim SJ, Choi JS, Park J, Ju SM, Han SJ, Kang IJ, Kang YH (2009). Bog blueberry anthocyanins alleviate photoaging in ultraviolet-B irradiation induced human dermal fibroblasts.Mol Nutr Food Res 53, 726-738.
32 Boesgaard KS, Albert KR, Ro-Poulsen H, Michelsen A, Mikkelsen TN, Schmidt NM (2012). Long-term structural canopy changes sustain net photosynthesis per ground area in high arctic Vaccinium uliginosum exposed to chan- ges in near-ambient UV-B levels.Physiol Plant 145, 540-550.
33 Chen L, Xin X, Yuan Q, Su D, Liu W (2014). Phytochemical properties and antioxidant capacities of various colored berries.J Sci Food Agric 94, 180-188.
34 Chester AL, Mcgraw JB (1983). Effects of nitrogen addition on the growth of Vaccinium uliginosum and Vaccinium vitis-idaea.Can J Bot 61, 2316-2322.
35 Choi YH, Kwon HS, Shin SG, Chung CK (2014). Vaccinium uliginosum L. improves amyloid β protein-induced learning and memory impairment in Alzheimer's disease in mice.Prev Nutr Food Sci 19, 343-347.
36 Eichholz I, Huyskens-Keil S, Keller A, Ulrich D, Kroh LW, Rohn S (2011). UV-B-induced changes of volatile metabolites and phenolic compounds in blueberries (Vaccinium corymbosum L.).Food Chem 126, 60-64.
37 Eidesen PB, Alsos IG, Popp M, Stensrud O, Suda J, Brochmann C (2007). Nuclear vs. plastid data: complex Pleistocene history of a circumpolar key species.Mol Ecol 16, 3902-3925.
38 Fang RC, Stevens PF (2005). Vaccinium Linnaeus. In: Wu CY, Raven PH, Hong DT, eds. Flora of China, Vol. 14. Beijing and St. Louis: Science Press and Missouri Botanical Garden Press. pp. 242-517.
39 Graae BJ, Alsos IG, Ejrnaes R (2008). The impact of temperature regimes on development, dormancy breaking and germination of dwarf shrub seeds from arctic, alpine and boreal sites.Plant Ecol 198, 275-284.
40 Häkkinen SH, Törrönen AR (2000). Content of flavonols and selected phenolic acids in strawberries and Vaccinium species: influence of cultivar, cultivation site and technique.Food Res Int 33, 517-524.
41 Hagerup O (1933). Studies on polyploid ecotypes in Vaccinium uliginosum L.Hereditas 18, 122-128.
42 Hara H (1953). Vaccinium uliginosum L. in Japan, with reference to variations in widespread northern species (2).Jap J Bot 27, 83-93.
43 Heim KE, Tagliaferro AR, Bobilya DJ (2002). Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships.J Nutr Biochem 13, 572-584.
44 Hirvi T, Honkanen E (1983). The aroma of some hybrids between high-bush blueberry (Vaccinium corymbosum L.) and bog blueberry (Vaccinium uliginosum L.).Z Lebensm Unters Forsch 176, 346-349.
45 Hollman PCH, Katan MB (1999). Dietary flavonoids intake, health effects and bioavailability.Food Chem Toxicol 37, 937-942.
46 Kähkönen MP, Hopia AI, Heinonen M (2001). Berry phenolics and their antioxidant activity.J Agr Food Chem 49, 4076-4082.
47 Kellogg J, Wang J, Flint C, Ribnicky D, Kuhn P, De Mejia EG, Raskin I, Lila MA (2010). Alaskan wild berry resources and human health under the cloud of climate change.J Agric Food Chem 58, 3884-3900.
48 Kil HK, Song YM, Chun K (2013). The efficacy of Vaccinium uliginosum for early age-related macula degeneration.J Korean Ophthalmol Soc 54, 1255-1260.
49 Kim MJ, Choung SY (2012). Mixture of polyphenols and anthocyanins from Vaccinium uliginosum L. alleviates DNCB-induced atopic dermatitis in NC/Nga mice.Evid Based Complement Alternat Med 2012, 461989.
50 Kim YH, Bang CY, Won EK, Kim JP, Choung SY (2009). Antioxidant activities of Vaccinium uliginosum L. extract and its active components.J Med Food 12, 885-892.
51 Kong JM, Chia LS, Goh NK, Chia TF, Brouillard R (2003). Analysis and biological activities of anthocyanins.Phytochemistry 64, 923-933.
52 Kusznierewicz B, Piekarska A, Mrugalska B, Konieczka P, Namiesnik J, Bartoszek A (2012). Phenolic composition and antioxidant properties of Polish blue-berried honeysuckle genotypes by HPLC-DAD-MS, HPLC postcolumn derivatization with ABTS or FC, and TLC with DPPH visualization.J Agric Food Chem 60, 1755-1763.
53 Lätti AK, Jaakola L, Riihinen KR, Kainulainen PS (2010). Anthocyanin and flavonol variation in bog bilberries (Vaccinium uliginosum L.) in Finland.J Agric Food Chem 58, 427-433.
54 Lee SH, Jeong HJ, Kim DW, Sohn EJ, Kim MJ, Kim DS, Kang TC, Lim SS, Kang IJ, Cho SW, Lee KS, Park J, Eum WS, Choi SY (2010). Enhancement of HIV-1 Tat fusion protein transduction efficiency by bog blueberry anthocyanins.BMB Rep 43, 561-566.
55 Li R, Wang P, Guo QQ, Wang ZY (2011). Anthocyanin composition and content of the Vaccinium uliginosum berry.Food Chem 125, 116-120.
56 Liu J, Zhang W, Jing H, Popovich DG (2010). Bog bilberry (Vaccinium uliginosum L.) extract reduces cultured Hep- G2, Caco-2, and 3T3-L1 cell viability, affects cell cycle progression, and has variable effects on membrane permeability.J Food Sci 75, 103-107.
57 Määttä-Riihinen KR, Kähkönen MP, Törrönen AR, Heinonen IM (2005). Catechins and procyanidins in berries of vaccinium species and their antioxidant activity.J Agric Food Chem 53, 8485-8491.
58 Ma YQ, Han CR, Liu Y (2011). Extraction of resveratrol from wild blueberry (Vaccinium uliginosum L.). Adv Mater Res 183-185, 2032-2036.
59 Masuoka C, Yokoi K, Komatsu H, Kinjo J, Nohara T, Ono M (2007). Two novel antioxidant ortho-benzoyloxyphenyl acetic acid derivatives from the fruit of Vaccinium uliginosum.Food Sci Technol Res 13, 215-220.
60 Nees H, Pachaly P, Zymalkowski F (1973). Chemotaxonomy of Ericaceae: isolation and identification of triterpenes and steroids from Vaccinium uliginosum.Planta Med 24, 320-328.
61 Primetta AK, Karppinen K, Riihinen KR, Jaakola L (2015). Metabolic and molecular analyses of white mutant Vaccinium berries show down-regulation of MYBPA1-type R2R3 MYB regulatory factor.Planta 242, 631-643.
62 Rieger G, Muller M, Cuttenberger H, Bucar F (2008). Influence of altitudinal variation on the content of phenolic compounds in wild populations of Calluna vulgaris, Sam- bucus nigra, and Vaccinium myrtillus.J Agric Food Chem 56, 9080-9086.
63 Song GQ, Hancock JF (2011). Vaccinium. In: Kole C, ed. Wild Crop Relatives: Genomic and Breeding Resources: Temperate Fruits. Berlin: Springer. pp. 197-221.
64 Taruscio TG, Barney DL, Exon J (2004). Content and profile of flavanoid and phenolic acid compounds in conjunction with the antioxidant capacity for a variety of northwest Vaccinium berries.J Agric Food Chem 52, 3169-3176.
65 Wang E, Yin Y, Xu C, Liu J (2014a). Isolation of high-purity anthocyanin mixtures and monomers from blueberries using combined chromatographic techniques.J Chromatogr A 1327, 39-48.
66 Wang J, Ma C, Rong W, Jing H, Hu X, Liu X, Jiang L, Wei F, Liu Z (2012). Bog bilberry anthocyanin extract improves motor functional recovery by multifaceted effects in spinal cord injury.Neurochem Res 37, 2814-2825.
67 Wang LJ, Su S, Wu J, Du H, Li SS, Huo JW, Zhang Y, Wang LS (2014b). Variation of anthocyanins and flavonols in Vaccinium uliginosum berry in Lesser Khingan Mountains and its antioxidant activity.Food Chem 160, 357-364.
68 Williams CA, Grayer RJ (2004). Anthocyanins and other flavonoids.Nat Prod Rep 21, 539-573.
69 Yin L, Pi YL, Zhang MN (2012). The effect of Vaccinium uliginosum on rabbit retinal structure and light-induced function damage.Chin J Integr Med 18, 299-303.
70 Young SB (1970). On the taxonomy and distribution of Vaccinium uliginosum.Rhodora 72, 439-459.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘剑秋 张清其 吴文珊. 金樱子花粉形态及营养成分研究[J]. 植物学报, 1994, 11(04): 43 -44 .
[2] 董杰;齐凤慧;詹亚光. 茶条槭悬浮培养体系的建立与没食子酸合成的优化条件[J]. 植物学报, 2008, 25(06): 734 -740 .
[3] 李国珍 秦明波 康宁玲 谢德玉 叶和春 李国凤. 新疆紫草的组织培养及其染色体分析[J]. 植物学报, 1992, 9(01): 37 -41 .
[4] 韩碧文. 根系的合成作用及其与地上部分的相关[J]. 植物学报, 1984, 2(23): 23 -25 .
[5] 王桂玲 秦智伟 周秀艳 赵咫云. 黄瓜果瘤的遗传及SSR 标记[J]. 植物学报, 2007, 24(02): 168 -172 .
[6] 杨晖 安黎哲 王治业 周剑平 王勋陵. UV-B 辐射对番茄花粉生活力的影响与内源激素和多胺的关系[J]. 植物学报, 2007, 24(02): 161 -167 .
[7] 郝照 赵雪晨 曾淑军 屈春英. 冬小麦麦苗不同叶龄的耐寒力[J]. 植物学报, 1985, 3(05): 38 -40 .
[8] 张惠珠 管中天 周林 徐国士. 中国两个苏铁植物群落的比较[J]. 植物学报, 1995, 12(专辑): 52 -58 .
[9] 曲良焕, 孙蒙祥. 位置信息与植物发育[J]. 植物学报, 2005, 22(03): 366 -374 .
[10] 任德勇, 何光华, 凌英华, 桑贤春, 杨正林, 赵芳明. 基于单片段代换系的水稻穗长QTL加性及其上位性效应[J]. 植物学报, 2010, 45(06): 662 -669 .